

Welcome to ngas’s documentation!

Contents:

	Introduction

	Changelog

	Installation
	Installing from source

	Docker container

	Post-installation
	Setting up an NGAS instance

	Running the server

	Running the client

	Running the tests

	NGAS tools
	Server tools

	Client tools

	Server
	Configuration

	Running Modes

	Proxy behavior

	Storage organization

	CRC

	Processing

	Archiving events

	States

	Requests database

	Logical Containers

	Authorization

	Logging

	Email Notifications

	Suspension

	Background tasks
	Janitor thread

	Data check thread

	Cache control

	Plug-ins
	Installation

	Developing plug-ins

	Commands
	Core

	Storage

	Containers

	Others

	Configuration
	Server

	Permissions

	Db

	Commands

	MimeTypes

	StorageSets

	Streams

	ArchiveHandling

	Processing

	Register

	Notification

	JanitorThread

	DataCheckThread

	Caching

	Log

	Authorization

	SubscriptionAuth

	HostSuspension

	SystemPlugIns

	PartnerSites

	API
	Database access

	Configuration

	Server classes

Introduction

The Next Generation Archive System (NGAS) is a very feature rich, archive
handling and management system.
In its core it is a HTTP based object storage system. It can be deployed
on single small servers, or in globally distributed clusters.

Some of its main features are:

	Basic archiving and retrieval of data

	Data checking via various checksum methods

	Server-side data compression and filtering

	Automatic mirroring of data

	Clustering and swarming

	Disk tracking and offline data transfer

	High customisation via user-provided plug-ins

NGAS is written in Python 2.7, making it highly portable.
There are a few dependencies on C libraries,
which may restrict the ability to install it
on some of the more exotic platforms.

Changelog

12.0

	Using sendfile(2) when POSTing files through HTTP connections.
This should lower the overhead of using python to perform the transfer,
bringing benefits to ngamsPClient class and command-line tool,
and to the subscription thread.

	Improved NGAS’s mail sending capabilities.
The code is now automatically tested by our unit tests,
which allowed us to ensure it sends mails correctly,
and works with python3.
On top of that mail messages are now created
using the standard library modules for correct mail composition,
instead of the “hand-written” logic we had previously.

	Fixed a small issue during backlog file archival
where the checksum plugin name was incorrectly recorded in the database.
This shouldn’t affect operational installations,
and most database drivers happily worked with the previous code,
but the Sybase driver caught this one.

	HTTP requests for archival with Content-Length equals to 0,
or with missing Content-Length,
now return an 411 HTTP status code
instead of the more generic 400 HTTP status code.

	Cleaned up and aligned the way in which volume information
is created and processed by NGAS.
The code around volume creation and scanning has been revised,
unit tests have been improved
to test the functionality more thoroughly,
and the existing, not-well maintained script
has now been better integrated
into the NGAS ecosystem.
Instructions on how to set up a volume directory
have also been updated,

	Renamed the old ngasArchiveClient tool
into fs-monitor,
and moved it into the ngamsPClient package.
This utility
had been kept until now
under the unmaintained ngasUtils package,
and therefore hadn’t been ported
alongside the rest of the code until now.
Not only was this tool renamed,
but it was completely overwritten
to simplify its maintenance in the long run,
and to enable easy unit testing,
which we have also added now.
Moving it into the ngamsPClient
ensure it will have continued testing and visibility.

	Added tests to ensure all plugin modules can be correctly imported.
This ensures the code is compatible with python 3 up to some degree,
and it also increases our code coverage.

	Unit tests don’t need to be run from within the test directory anymore.
This makes using unit test tools
like pytest or the built-in unittest module
easier to use.

	Fixed issues with the BBCPARC command,
which didn’t work [https://github.com/ICRAR/ngas/issues/19]
for remote host transfers, only for localhost ones.

	Fixed small issue in QUERY command
where column names where not correctly aligned
with the underlying column data.

	Added support for using HTTPS with both the client and with subscriptions.
Support for wrapping the server with TLS has also been added, but this should
only be used for testing, rather than in production (we recommend handling
HTTPS with more traditional HTTPS servers such as Apache or Nginx).

	Added support for using more diverse authentication plugins for subscription,
via the authentication mechanisms provided by requests. Note that with the
current setup, the authentication plugins can only be used with HTTPS (this
may change in the future).

	Default FITS plug-in doesn’t mandate an ARCFILE keyword to be present
in the incoming FITS file if the ignore_arcfile=1 option is given in the
HTTP parameters. This is useful for archiving FITS files that don’t have this
keyword, but that want to use the default FITS plug-in.

	Removing the create_venv.sh script from the sources,
in favour of letting users create one by themselves if they want,
or let the fabric tasks create one.

	Added Exclude attribute to the Authorization element for defining
a list of commands that are to be excluded from authorization

	Added new partner sites feature that provides the capability of configuring
a remote NGAS cluster as a proxy for retrieving files that are not available
in the local NGAS cluster.

	Fixed the mirroring plugin modules: ngamsCmd_HTTPFETCH.py,
ngamsCmd_MIRRARCHIVE.py, ngamsCmd_MIRREXEC.py and ngamsCmd_MIRRTABLE.py

	Ported NGAS utility scripts: ngasCheckFileCopies.py, ngasCheckFileList.py
ngasDiscardFiles.py, ngasVerifyCloning.py and ngasXSyncTool.py

	Fixed an issue with the subscription mechanism,
where upstream files with checksum values
calculated with checksum variants other than crc32
failed to be pushed downstream.

	Fixed logging of C utilities,
and implemented the logic behind the -v flag
of the ngamsCClient program.

	Improved error message sent back by the REGISTER command
when registration of a file
with a MIME type with no configured plug-in
is requested.

	The bad-files directory
now exists on each volume
rather that there being a single one
outside of any volume directory.
This allows for faster movement of files
into the bad-files directory,
a more consistent directory structure,
and better traceability of files that end up in bad-files.

	The ngamsDaemon.py now checks the -force command line option and will
forcibly start-up and clean up any existing PID lock files.

	Lots of code clean up for the mirroring plugin code using PEP8 style
guidelines. Replaced deprecated rfc822 module with email module in the
ngamsDAPIMirroring.py and ngamsAlmaMultipart.py plugins. Added
test_dapi_mirroring.py unit tests. General code clean up changes in both
mirroring and SDM multipart plug-ins.

	Fixed ‘Connection refused’ exception on mirror plugin start-up. Now logs a
warning when NGAS server is not available. Now uses exception class instead
of string for handling stop events.

11.0.2

	Fixed an important bug that was preventing the STATUS command
from being imported correctly in normal NGAS installations.

11.0.1

	Fixed an important bug that was causing data to be removed
from the NGAS root directory.

11.0

	Initial python 3 support.
The code not only correctly imports under python 3,
but also all unit tests pass correctly.
The code is both 2.7/3.5+ compatible,
so users don’t need to immediately switch to python 3.
Given that our test coverage currently sits at about 65%,
it is likely that there are code paths that need further work.

	Command plug-ins can be implemented
as user-provided plug-ins.
This was almost the case until now, as they still had the restriction
of having to reside on the ngamsPlugIns package,
which is not the case anymore.
Moreover, a single python module can implement the logic
of more than one command.

	Unit tests can be run against arbitrary filesystems,
and they default to run under /dev/shm for faster execution.

	Added new CRC variant called crc32z.
It behaves exactly like crc32, except that its values,
as stored in the database, should be consistent
across python 2.7 and 3.
The crc32 variant does not have this property,
although we can still (and do) normalize them
when checking files’ checksums.

	Changed the server to use a thread pool to serve requests
instead of creating a brand new thread every time a request comes in.

	Improving how the RETRIEVE command works
when returning compressed files.

	Adding support to the CRETRIEVE command
to retrieve all files as a tarball.
It internally uses sendfile(2) when possible.

	Users can configure NGAS to issue a specific SQL statement
at connection-establishment time, similarly to how other connection pools do.

	Fixed a few details regarding expected v/s real datatypes
used in some SQL queries.
These affected only the Sybase ASE official driver,
which is now working correctly.

	Unit tests moved to the top-level test directory,
and renamed to test_*.py.
This makes it more straight-forward to use unit test runners
which usually rely on this layout for test discovery.

	A new sample configuration file replaces the old, large set
of configuration files that used to be shipped with NGAS.

	Starting a server in cache mode is now be done
via a configuration file preference rather than a command-line argument.

	The subscription code and the cache handling thread
update the file status flags atomically.
Before they had a race condition which resulted in files
not being deleted on the cache server.

	Improving handling of overwriting flags for archiving commands.
Now all archiving commands obey the same logic,
which has been detached from the individual
data-archiving plug-ins.

	Improving and simplifying the QUERY command.

	Removed many unnecessary internal usage
of .bsddb files.

	Added a MacOS build
to our Travis CI [https://travis-ci.org/ICRAR/ngas] set up.

	Misc bug fixes and code improvements.

10.0

	The ARCHIVE, QARCHIVE, REARCHIVE and BBCPARC commands now use the same underlying code.
All the small differences between the commands has been kept, so they should behave exactly as before.
This was a required step we needed to take before implementing other improvements/bugfixes.

	The archiving commands listed above are now more efficient in how they calculate the checksum of the incoming data.
If the data archiving plug-in promises not to change the data, then the checksum is calculated on the incoming stream
instead of calculating it on the file, reducing disk access and response times.
This behavior was previously not seen
neither on the ARCHIVE command,
which always dumped all contents to disk
and then did a checksum on the on-disk contents,
nor in the QARCHIVE command,
which unconditionally calculated the checksum
on the incoming stream,
irrespective of whether the data archiving plug-in
changed the data afterward or not.

	Partial content retrieval for the RETRIEVE command has been implemented.
This feature was present in the ALMA branch of the NGAS code,
and now has been incorporated into ours.

	We merged the latest ALMA mirroring code into our code base.
This and the point above should ensure that NGAS is ALMA-compatible.

	Unified and centralized all the CRC checksuming code,
and how different variants are chosen.

	We have improved response times for scenarios
when many parallel RETRIEVE commands are issued.
Worst-case scenario times in 100 parallel request scenarios were brought down
from tens of seconds to about 2 seconds (i.e., an order of magnitude).

	Moved the data-check background thread checksum
to a separate pool of processes
to avoid hanging up the main process.
The checksuming also pauses/resumes depending on whether the server
is serving any requests or not to avoid exhausting access to the disk.

	Added the ability to write plug-ins that will react to each file archiving
(e.g., to trigger some processing, etc).

	Added support for the latest bbcp [https://www.slac.stanford.edu/~abh/bbcp/] release,
which includes, among other things, our contributions
to add support for the crc32c checksum variant,
plus other fixes to existing code.

	Fixed a few small problems with different installation scenarios.

9.1

	NGAS is now hosted in our public GitHub repository [https://github.com/ICRAR/ngas].

	Travis CI [https://travis-ci.org/ICRAR/ngas] has been set up
to ensure that tests runs correctly against SQLite3, MySQL and PostgreSQL.

	User-provided plug-ins do not need to be installed alongside NGAS anymore.
This allows users to place their plug-ins
in their own personally-owned directories,
which in turn allows to install NGAS in isolation,
and probably with more strict permissions.

	Project-specific plug-ins under the ngamsPlugIns package
have been moved to sub-packages (e.g., ngamsPlugIns.mwa),
and will eventually be phased out as projects take ownership
of their own plug-ins.

	Janitor Thread changes:

	Plug-ins: Instead of having a fixed, single module with all the business logic of the Janitor Thread,
its individual components have been broken down into separate modules
which are loaded and run using a standard interface.
This makes the whole Janitor Thread logic simpler.
It also allows us to implement users-written plug-ins
that can be run as part of the janitor thread.

	The execution of the Janitor Thread doesn’t actually happen in a thread anymore,
but in a separate process.
This takes some burden out from the main NGAS process.
In most places we keep calling it a thread though;
this will continue changing continuously as we find these occurrences.

	The NGAS server script, the daemon script and the SystemV init script
have been made more flexible,
removing the need of having more than one version for each of them.

	Some cleanup has been done on the NGAS client-side HTTP code
to remove duplicates and offer a better interface both internally and externally.

	Self-archiving of logfiles is now optional.

	A few occurrences of code incorrectly handling database results
have been fixed,
making the code behave better across different databases.

	Misc bug fixes and code cleanups.

9.0

	Switched from our pcc-based, own home-brewed logging package
to the standard python logging module.

	Unified time conversion routines, eliminating heaps of old code

	Removed the entire pcc set of modules.

	General bug fixes and improvements.

8.0

	Re-structured NGAS python packages.
Importing NGAS python packages is now simpler and doesn’t alter the python path in any way.
The different packages can be installed
either as zipped eggs, exploded eggs, or in development mode.
This makes NGAS behave like other standard python packages,
and therefore easier to install in any platform/environment
where setuptools or pip is available.

	RETRIEVE command uses sendfile(2) to serve files to clients.
This is more efficient both in terms of kernel-user interaction
(less memory copying), and python performance (less python instructions
have to be decoded/interpreted, needing less GIL locking, leading to better
performance and less multithread contention).

	Initial support for logical containers.
Logical containers are groups of files, similar to how directories group files in a filesystem.

	NGAS server replying with more standard HTTP headers
(e.g., Content-Type instead of content-type).
Most HTTP client-side libraries are lenient to these differences though.

	Streamlined crc32c support throughout QARCHIVE and subscription flows.
We use the crc32c [https://github.com/ICRAR/crc32c] module for this,
which was previously found as part of NGAS’s source code,
but that has been separated into its own package for better reusability.

	Stabilization of unit test suite.
Now the unit test suite shipped with NGAS runs reliably on most computers.
This made it possible to have a continuous integration environment
(based on a private Jenkins installation)
to monitor the health of the software after each change on the code.

	Improved SQL interaction, making sure we use prepared statements all over the place,
and standard PEP-249 python modules for database connectivity.

	Improved server- and client-side connection handling,
specially error-handling paths.

	General bug fixes and improvements.

Installation

Contents

	Installing from source

	Manual installation

	Via Fabric

	Basic per-user installation

	Total system setup

	Other Fabric tasks

	AWS deployment

	Docker Image

	Docker container

Installing from source

First, get the latest NGAS sources:

git clone https://github.com/ICRAR/ngas

Installing NGAS from source is pretty straight-forward.
There are two ways to perform an installation:

	Manually.

	Using Fabric.
This is the recommended way, if possible, as it automates most of the
installation steps while still being highly customisable.

Manual installation

Note

Like any other python package,
NGAS can be installed in a virtual environment
or as a system-wide package.

 Post-installation

Post-installation

Note

If NGAS was installed in a virtual environment
remember to source it before proceeding.

 NGAS tools

NGAS tools

This section lists
the command-line tools installed
by the different NGAS python packages.
A very brief description of each tool is given.
For more details on each of them
you can follow the relevant links,
or get the corresponding command-line help message
for each of them.

Server tools

These are programs and scripts
that are only relevant for the server-side of NGAS.

ngamsServer

The main workhorse of NGAS,
the ngamsServer tool
starts up an NGAS server.

For details on how to start the server,
run ngamsServer -h.
Alternatively you can read Running the server.
For more documentation on the server itself,
its organization and features,
please check the server documentation.

ngamsDaemon

The ngamsDaemon tool
starts an NGAS server is daemon mode.

For details on how to start a daemon
run ngamsDaemon -h.
Alternatively you can read Running the server.

ngas-prepare-volume

Note

This tools was previous known as ngasPrepareVolume
but had not been properly kept up to date.

 Server

Server

The NGAS server is the heart of NGAS.

Configuration

The NGAS server is configured via an XML configuration file,
which is indicated to the server at startup time
via the -cfg command-line flag
(see Running the server).

To see more details about the XML documentation
go to the Configuration section.

Running Modes

The NGAS server can be run in three different modes:

	As a cache server

	As a data-mover (or read-only) server

	As a normal server

Selecting which mode will be used
is done by editing the server configuration file.

Additionally,
server can be configured to be allowed to perform
a specific set of actions.
For details see Permissions.

Cache mode

When started in cache mode,
an NGAS server starts
its cache control thread,
enabling it to periodically remove files
from its underlying storage
after they have been successfully transmitted
to the configured subscribers.
This behavior effectively turns the NGAS server
into a temporary cache
for data in transit to some other location.

To start an NGAS server
with its cache control thread enabled
you need the configure the caching element
of the server configuration file.

Note

A server in cache mode was historically started
by running an ngamsCacheServer executable.
Since v11.0 this alternative doesn’t exist anymore,
and centralizing the server’s starting mode
in its configuration file.

 Background tasks

Background tasks

Apart from serving requests to users,
the NGAS server executes different tasks in the background
with a given period.

This section describes
the purpose of these tasks,
how they work,
and which of their aspects are configurable.

Janitor thread

The Janitor thread is a background task
taking care of generic, routine tasks.
Among other things,
it checks that sufficient disk space is available
for each of the configured volumes,
cleans up old data from temporary directories,
sends pending notifications,
archives rotated logfiles, and more.
Moreover, additional tasks to be carried out
by the janitor thread
can be specified by users via the configuration file
and implemented as user-provided plug-ins.

Data check thread

The data check thread is a background task
that periodically checks the integrity
of the files sitting on disk
by comparing their checksum as stored in the database
against a freshly computed checksum.
All aspects of the data check thread
are configured via the NGAS server configuration file
(see DataCheckThread).

Data checking can be expensive depending on your setup,
as it re-reads the full contents of the ingested data.
Not all systems might be able to carry out such a task;
thus data checking can be enabled or disabled.

The data check thread continuously runs
a full data check cycle
with a configurable period.
At the beginning of each data check cycle
a lists all files on disk is constructed,
then their checksums are calculated
(using the same CRC variant
that was used to archive the file)
and compared against the database-stored values.
Any checksum failures
or files found to be unregistered
are then notified.
Finally, the data check thread waits until the period finishes
to start a new cycle.

The data check thread actually uses a pool of processes
to carry out the checksum calculations,
increasing its performance
when more than one core is available in the system.
This parallel execution of checksum checking
also takes into account the volumes to which the files belong to,
reading files in parallel from different volumes when possible.

Finally, all data checking workload is fully paused
whenever the server is serving a user request.
This prevents user requests to be slowed down
due to resource exhaustion produced by the data checking processes
(in particular, CPU and disk reading).

Cache control

The Cache control task, if enabled,
periodically removes local files from the server.
This is useful in setups
where an NGAS server acts as a buffer
to received data locally
before replicating it
to different, remote locations.
Being able to remove local files automatically
keeps the overall disk in check,
allowing users to decide
what their space needs are
depending on the buffering capabilities
needed by the system.

A number of criteria control
how and when local files are removed from NGAS,
which can be configured
through the Caching element
in the server’s configuration file:

	A per-file time limit has been reached.
If configured, files are removed from the server
after a given amount of time has passed
since the file was originally archived.

	A maximum amount of storage capacity has been hit.
When configured, files are removed
when their total volume exceeds the specified maximum value.
Older files are deleted first.

	A maximum number of files has been hit.
When this option is set, files are removed
when their total number exceeds the configured limit.
Older files are deleted first.

	A user-provided plug-in makes the decision.
Users can write ad-hoc code to decide
whether particular files should be deleted (or not).

More than one rule can be active at a given time,
in which case they are processed in the order given above.
On top of that, if the Subscription service is enabled
files will only be eligible for deletion
after they are successfully transmitted to all their subscribers
(this cannot be overridden).

 Plug-ins

Plug-ins

A central feature of NGAS
is its extensibility.
By writing different types of plug-ins
users can modify the default behaviour of NGAS,
add functionality that is specific to their projects,
or adjust some details for specific platforms.

Installation

Regardless of the type of plug-in you want to install,
NGAS must be able to find it.
Because it is not always possible
to install user-written code alongside NGAS itself
(e.g., NGAS installation could be read-only,
or writeable only by root)
NGAS loads user-provided code
from any arbitrary, user-defined location.
This is indicated in the server’s configuration file
with the PluginsPath variable.
For details on how this works
see the Server configuration element.

Developing plug-ins

Depending on the type of plug-in you want to develop,
different interfaces must be obeyed.
Also, even though all plug-ins can be installed in the same area,
configuring the server to actually use them is a different task,
and which is different from one plug-in type to another.

The following sub-sections detail
each plug-in type,
what is the interface they should obey,
and how to configured the server to use it.

	Commands
	Interface

	Registration

	Archiving event handlers
	Interface

	Registration

	Logfile handling
	Interface

	Registration

	Subscription filtering
	Interface

	Registration

 Commands

Commands

NGAS allows users to write their own modules
to implement new NGAS commands.

Interface

The only requirement a command plug-in needs to satisfy
is to implement a method at the module level:

def handleCmd(server, request, http_ref)

The arguments are the following:

	server is a reference to the ngamsServer instance
this command is running in.
From the server object
a pointer to the database object
and to the configuration object
can be obtained
(via server.db and server.cfg respectively).

	request is an instance of ngamsReqProps,
and encapsulates information that exists in the scope of a request.

	http_ref is a reference to the HTTP connection.
It can be used to read content from the incoming data stream,
and send responses.

Any uncaught exception thrown by the handleCmd method
will be interpreted as an error by the NGAS server
and will generate an error status code being sent to the client,
together with an XML NGAS status document indicating the failure.

If the module returns a string,
this will be used to create an XML NGAS status document
that will contain that message,
and that will be returned to the client with a 200 HTTP status code.

If the module returns None,
a generic success XML NGAS status document will be sent to the client.

To send other kind of replies,
please refer to the
ngamsHttpRequestHandler class documentation.

Registration

Modules implementing commands must be registered with NGAS
in order to be picked up.
This is done by listing them
in the Commands element
of the server XML configuration.

 Archiving event handlers

Archiving event handlers

Apart from the built-in Archiving events,
users can provide their own code to handle them.

Interface

Archiving event handler are implemented
by writing a python class with a handle_event method.

class MyEventHandler(object):

 def __init__(**kwargs):
 pass

 def handle_event(evt):
 pass

The class constructor should accept keyword arguments
(corresponding to the parameters set in the configuration, see below).
The class’ handle_event method
accepts a unique parameter (the archiving event),
and gets invoked for each archiving event.
The event has two members, file_id and file_version,
with the ID of the file just archived and its version.

Note

Archiving event handlers run synchronously
as part of the archiving process.
Therefore it is vital they are fast,
otherwise they can block the server.

 Logfile handling

Logfile handling

As explained in Logging,
users can write their own logfile handling plug-ins.
These plug-ins will be invoked each time a logfile is rotated,
which happens after a fixed amount of time,
and every time the server is started.

Interface

Logfile handling is implemented
by writing a python module with a run method.

def run(srv, fname):
 pass

The srv argument is an ngamsServer object,
and the fname is the path to the rotated logfile.
Logfile handler plug-ins run asynchronously
as part of the janitor thread,
and therefore it is acceptable
that they take some time to run.

Registration

Logfile handling plug-ins must be registered with NGAS
in order to be picked up.
See Log
for details on how to do this.

 Subscription filtering

Subscription filtering

NGAS allows users to write their own modules
to provide subscription filtering logic.

Interface

The only requirement a subscription filtering plug-in has
is to implement one method at the module level
with the same name of the module itself:

def my_plugin_name(server, plugin_pars, file_name, file_id, file_version)

my_plugin_name needs to match the name of the module;
in other words, the file containing it must be called
my_plugin_name.py.

The arguments are the following:

	server is a reference to the ngamsServer instance
this command is running in.
From the server object
a pointer to the database object
and to the configuration object
can be obtained
(via server.db and server.cfg respectively).

	plugin_pars is the comma-separated, key=value pairs of parameters
as stored by the subscription in the database.

	file_name, file_id and file_version are the name, ID and version
of the file delivery being assessed.

The method should return True if the file should be delivered,
and False otherwise.

Please note that filtering is done on a per-file basis.
Calculating the list of files that will be fed into the plug-in
is outside of the scope of this plug-in, and depends
on the subscription settings, like its start date.

Registration

Modules implementing commands must be registered with NGAS
in order to be picked up.
This is done by listing them
in the Commands element
of the server XML configuration.

 Commands

Commands

An NGAS server works by replying to HTTP requests sent to it. All URLs used to
contact NGAS have the following structure:

http://<server>:<port>/<command>?<parameters>

The server and port parts indicate where the NGAS server is listening
for requests. The command part is a simple name, usually in uppercase, like
ARCHIVE or RETRIEVE, and indicates the action to be performed by the
server. An optional list of parameters, separated by an ampersand (&) sign, and
optionally each having a value, provides further details about the action to be
performed.

NGAS currently supports the POST, GET and PUT HTTP methods only. In
general the method used to invoke a command does not make a difference, but some
commands have different behavior depending on the HTTP Method being used. Refer
to the documentation of each command for more details.

All commands return an HTTP status code that reflects the outcome of the
operation (200 for success, 3xx for redirections, 4xx for errors). Additionally
some commands return a status XML document with a more detailed description of
the operation result.

One can configure an NGAS server to accept HTTP requests only from authenticated
users, and moreover to allow certain commands to certain users only. Please
refer to Authorization for more details.

The following is a list of the most relevant commands supported by NGAS. More
commands can be added in the form of plug-ins
(see Commands for details).

There are three ways in which commands are found by NGAS:

	There is a fixed set of built-in commands.
Users cannot override these with their own.
Commands like RETRIEVE and STATUS belong to this category.

	Modules with a name following the pattern ngamsPlugin.ngamsCmd_<CMD>.
For historical reasons there are a number of commands
that are shipped with NGAS, but that are implemented as plug-ins,
and are named following this pattern.
In future releases these will be shipped as regular built-in commands,
and therefore this special pattern will no longer be considered.

	User-written plug-ins that are registered
in the Commands section of the server configuration.

	Core
	STATUS

	OFFLINE

	ONLINE

	EXIT

	Storage
	ARCHIVE

	QARCHIVE

	RETRIEVE

	QUERY

	CLONE

	CHECKFILE

	CACHEDEL

	REMDISK

	REMFILE

	REGISTER

	REARCHIVE

	Containers
	CCREATE

	CARCHIVE

	CAPPEND

	CDESTROY

	CREMOVE

	CRETRIEVE

	CLIST

	Others
	SUBSCRIBE

	UNSUBSCRIBE

 Core

Core

STATUS

The STATUS command is the most basic of all. It can be used (and is used) to
confirm that an NGAS server instance is correctly running. It simply returns a
status XML document containing information about the server runtime, like its
state, disks, etc.

In particular, it can also be used to query the status
of a previous client request when given a request_id URL query parameter.
See Requests database for more details.

OFFLINE

Sends the NGAS server to the OFFLINE state. See States.

ONLINE

Sends the NGAS server to the ONLINE state. See States.

EXIT

Stops the NGAS server. The server must be in the OFFLINE state for the
EXIT command to be successful.

 Storage

Storage

ARCHIVE

Archive data files within an NGAS node,
calculating and storing the CRC of the archived file
in the NGAS database.

After a successful archiving of a file,
all archiving event handlers are invoked.
Read Archiving events for more information
about these events and how to handle them.

The ARCHIVE command supports two modes of operation: pull and push.
A pull request is issued by using the GET method,
and tells an NGAS node to fetch and archive a file based on a valid URI.
A push request, on the other hand, is issued by using the POST method,
and requires the client to send the file contents as a byte stream to the NGAS server.

When incoming files matching an existing file ID in the NGAS DB,
their contents are stored using a new version number if file versioning is on.
If file versioning is off, they will overwrite an existing file’s contents instead.
When overwriting, users can specify a specific file version to overwrite,
which must exist locally in the server receiving the request.

Parameters

	filename: a valid URI i.e. file://, http://, ftp:// for Pull or filename ie. test.fits for Push.

	mime_type: describes the content-type of the file.
If not given, NGAS tries to guess it based on the filename’s extension,
and the internal mime-type information
stored in the NGAS configuration.

	versioning: used to switch the automatic versioning on
(1, the default behavior) or off (0).

	no_versioning: The inverse of versioning. This is kept for backwards compatibility.
If both are specified, versioning takes precedence.

	file_version: specifies which file version to overwrite.
Only taken into account when versioning=0/no_versioning=1.

	crc_variant: used to explicitly choose which CRC variant will be used to checksum the file,
overriding the system-wide configuration. See CRC for details

Archive Pull Example

In this case the NGAS server will attempt to retrieve and archive the file remote.fits from the remote http server:

curl http://<host>:<port>/ARCHIVE?filename=http://<remotehost>:<remoteport>/remote.fits

Archive Push Example

In this example it is expected that the client uploads the file content as a byte stream to the NGAS server:

curl -X POST -i -H "Content-Type: application/octet-stream" --data-binary "@/tmp/file.fits" http://<host>:<port>/ARCHIVE?filename=file.fits

QARCHIVE

Like ARCHIVE, but with the following differences:

	The target volume is selected at random from the available volumes in the server.
This bypasses the server’s stream configuration,
but should yield a more even loading of the available volumes.

	No file replication is carried out,
even if a storage set declares a replication disk.

The QARCHIVE command was initially implemented
separately from the ARCHIVE command,
and therefore they used to differ in more ways.
In particular QARCHIVE originally was the only one
implementing on-stream checksuming,
while ARCHIVE didn’t.
Nowadays they share the same underlying logic though,
and only the differences documented above remain.

RETRIEVE

Retrieve archived data files from an NGAS server or cluster.

Parameters

	file_id: ID of the file to retrieve.

	file_version: version of the file to retrieve.

	processing_pars: invoke a processing plug-in by name that will operate on the file requested. Note that NGAS will send back the result of the processing which may or may not be a file stream.

If multiple files of the same ID exist and file_version is not specified then the file with the highest version number will be retrieved by default.

If the file was compressed internally by NGAS at archiving time,
at RETRIEVE time the contents are still returned compressed.
Different clients will handle this differently:
if the client supports Content-Encoding: XYZ responses
(with XYZ being the compression used internally in NGAS)
then a filename without the corresponding compression extension will be presented,
as the client automatically decompresses the incoming content
before presenting it to the user.
In the case the client doesn’t support this,
a filename with the corresponding extension will be presented
to ensure clients associate the filename and its contents
with the corresponding utilities.

Note that only one file can be retrieved per RETRIEVE request.

Example

Get the latest version of a file if it exists:

curl http://<host>:<port>/RETRIEVE?file_id=file.fits

Get specific version of a file if it exists:

curl http://<host>:<port>/RETRIEVE?file_id=file.fits&file_version=2

QUERY

The QUERY command is used to list different types of elements
currently known by the server.
Users can use the QUERY command
to find out which files have been archived into the server,
which subscriptions have been created,
which disks are present in the system,
and more.

Parameters

	query: The query to run, the only required argument. Valid values are:

	files_list: a list of all files in the system.

	subscribers_list: a list of all subscriptions in the system.

	subscribers_like: a list of subscriptions in the database
belonging to hosts matching the given like value (see below).

	disks_list: a list of all disks in the system.

	hosts_list: a list of all hosts that are part of the same cluster.

	files_like: a list of files whose ID matches
the given like value (see below).

	files_location: a list of all files in the system,
but with information about their physical location on disk.

	lastver_location: like files_location,
but only listing the last version of each file.

	files_between: a list of files archived into the system
between start and end date (see below).

	files_stats: the total size of all archived files, in [MB].

	files_list_recent: a list of the last 300 archived files.

	format: the format in which the result of the query
will be returned to the client.
Valid values are list (a textual, table-like representation),
pickle (a python pickled version of the data),
json (a json representation of the data),
and python-list (a str representation of the direct result of the
query).

	like: indicate the value to use in the *_like queries.
If no string is given, % will be used,
therefore matching all values for the corresponding attribute.

	start and end: indicate the beginning and the end
of the time interval used for the files_between query.
Both parameters must be specified
in order for the interval to be properly defined.
If any of the two is (or both are) missing,
no interval is used.

Example

Get list of all subscriptions the system in json format:

curl http://<host>:<port>/QUERY?query=subscribers_list&format=json

Get list of all files in the system:

curl http://<host>:<port>/QUERY?query=files_list&format=list

CLONE

The CLONE Command is used to create copies of a single file or sets of files.
In order for the CLONE Command to be accepted by an NGAS node,
the system must be configured to accept Archive Requests.
NGAS will calculate if there is enough space to execute the request, if not then an error is returned.
If the files to be cloned are located on other NGAS host,
these will be requested automatically during the cloning (if possible).
If the NGAS hosts are suspended, they will be woken up automatically.

Parameters

	disk_id: disk ID where the files to be cloned exist.

	file_id: ID of the files to be cloned.

	file_version: file version of the files to be cloned.

	notif_email: list of comma separated email addresses to where the Clone Status Report can be sent.

The actions of the various combinations of these parameters are explained below:

	disk_id

	file_id

	file_version

	Action

	
	
	

	
	Clone one file with the given ID. Latest version of the file is taken.

	
	

	
	

	
	Clone one file stored on the given disk. Latest version on that disk is taken.

	
	
	

	
	

	Clone all files found with the given File Version. Storage location (Disk ID) is not taken into account.

	
	

	
	

	
	

	Clone one file on the given disk with the given File Version.

	
	

	
	
	Clone all files from the disk with the given ID.

	
	

	
	
	

	Clone all files with the given File Version from the disk with the ID given.

	
	
	
	

	Illegal. Not accepted to clone arbitrarily files given by only the File Version.

CHECKFILE

The CHECKFILE command is used to check the consistency of a specific file.

Parameters

	disk_id: disk ID where the file to be checked exists.

	file_id: ID of the file to check.

	file_version: version of the file to check.

CACHEDEL

The CACHEDEL command is used to remove a file from an NGAS cluster. Only the ngamsCacheServer version supports this command.

WARNING: Once the command completes successfully the file is permanently deleted from the NGAS database and the underlying file system.

Parameters

	disk_id: disk ID where the file to be deleted exists.

	file_id: ID of the file to be deleted.

	file_version: version of the file to be deleted.

REMDISK

The REMDISK command is used to remove storage media from an NGAS node.
The command removes both the information about the storage media and the files stored on said media.
NGAS will not remove the files from the system unless there are at least three (3) independent copies of the files.
Three independent copies refers to three copies of the file stored on three independent storage media.
In order for the REMDISK command to be accepted the system must be configured to allow remove requests i.e. NgamsCfg.Server:AllowRemoveReq is set in the configuration file.
If the command is executed without the execute parameter, the information about the disk is not deleted,
but a report is generated indicating what will be deleted if the execution is requested i.e. execute = 1.

WARNING: Once the command completes successfully the files associated with the storage media are permanently deleted from the NGAS database and the underlying file system.

Parameters

	disk_id: ID of disk/media to remove from NGAS node.

	execute: (0 or 1) 0: is a dummy run which will only report what will happen if the command is executed. 1: executes the command which will deleted the storage media and the associated files.

	notif_email: list of comma separated email addresses to where the REMDISK Status Report can be sent.

REMFILE

The REMFILE command removes a single file from an NGAS node. NGAS will not remove the files from the system unless there are at least three (3) independent copies of the files.
In order for the REMFILE command to be accepted the system must be configured to allow remove requests i.e. NgamsCfg.Server:AllowRemoveReq is set in the configuration file.

Parameters

	disk_id: disk ID where the file to be deleted exists.

	file_id: ID of the file to be deleted.

	file_version: version of the file to be deleted.

	execute: (0 or 1) 0: is a dummy run which will only report what will happen if the command is executed. 1: executes the command which will delete the file.

	notif_email: list of comma separated email addresses to where the REMFILE Status Report can be sent.

The actions of the various combinations of these parameters are explained below:

	disk_id

	file_id

	file_version

	Action

	
	
	

	
	All files matching the given File ID pattern on the contacted NGAS host are selected.

	
	

	
	

	
	All files with the given File ID on the disk with the given ID will be selected.

	
	
	

	
	

	All files with the given File ID pattern and the given File Version are selected.

	
	

	
	

	
	

	The referenced file with the given File ID and File Version on the given ID is selected (if this exists).

	
	

	
	
	Illegal.

	
	

	
	
	

	No files are selected.

	
	
	
	

	No files are selected.

REGISTER

The REGISTER command is used to register files already stored on an NGAS disk.
It is possible to register single files or entire sets of files by specifying a root path.
Only files that are known to NGAS (with a mime-type defined in the configuration) will be taking into account.
It is also possible to explicitly specify a comma separated list of mime-types that will be registered.
Files with other mime-types than specified in this list will be ignored.

Parameters

	mime_type: comma separated list of mime-types. A single mime-type can also be specified.

	path: The root path under which NGAS will look for candidate files to register. It is also possible to specify a complete path to a single file.

	notif_email: email address to send file registration report.

NGAS can be configured to run specific code
when registering a file.
See Register for details.

REARCHIVE

The purpose of the REARCHIVE command is to register a file in the NGAS DB that has already been generated when the file was archived with the QARCHIVE command.
This means that the process of extracting the meta-information and other processing can be skipped whilst re-archiving the file making the processing more efficient.

The meta-information about the file is contained in the special HTTP header named NGAS-File-Info.
It is stored as a base64 encoded NGAS XML block for the file (NGAS File Info).
This encoding can be accomplished by means of the Python module base64 using base64.b64encode().

The command does not require any parameters but the data to be re-archived should be contained in the body of the HTTP request similar to QARCHIVE Push or Pull.

 Containers

Containers

The following commands deal with logical containers. For an explanation on
containers see Logical Containers.

For container-related commands in general, when dealing with existing containers
the following rule applies: if the container can be uniquely identified by name
the container_name parameter is enough to describe it; otherwise the
container_id parameter must be given.

CCREATE

Creates one or more containers but without adding files into them.

To create a single container the container_name parameter must be present,
optionally the parent_container_id can be given, and the request must be
performed using the GET method.
To create multiple containers an XML document must be sent in the request body
containing elements with a name attribute, and optionally a
parentContainerId attribute at the root level. Nested elements are allowed
to create a hierarchy of containers.

CARCHIVE

Archives files and creates the necessary containers for them.

This command reads a MIME Multipart message from the request body. The
Content-Disposition header of the multipart message contains the name of the
container. The messages inside the multipart message each contains in turn a
Container-Disposition header indicating the name of the file they represent,
and their payload is the file’s content. A multipart message may also contain
multipart messages inside, creating a hierarchy of containers.

CAPPEND

Appends an existing file into an existing container.

If using the GET method the file_id parameter must point to a file that
will be added to the container. Multiple files can also be added at once when
using the POST method and sending an XML document in the request body
consisting of a list of File elements, each with a FileId attribute in
them pointing to an existing file.

CDESTROY

Destroys a single container, without removing its files.

If the optional recursive parameter is set to 1 the children containers
will also be removed recursively.

CREMOVE

Removes an existing file from an existing container.

File specifications follow the same rules followed by CAPPEND.

CRETRIEVE

Retrieves all the contents of a container.

See CARCHIVE for a description of the format used by the
response body to transmit the contents of the container.
Alternatively,
if a format parameter with the value application/x-tar is given,
the contents of the container will be retrieved
as an uncompressed tarfile instead.

CLIST

Returns a status XML document containing the container hierarchy rooted at the
specified container.

 Others

Others

SUBSCRIBE

The Data Subscription Service of NGAS makes it possible to synchronize a full or partial set of data
files to remote Data Subscribers which can be other NGAS nodes. A client subscribing for data is referred to as a Data Subscriber.
An NGAS Server, which delivers data to such a Subscriber, is referred to as a Data Provider.

A Data Subscriber can specify to receive data files from a certain point in the past to the present day.
If the time is not defined then only newly archived files will be delivered to the subscriber.
It is also possible for the Data Subscriber to specify a Filter Plug-In which is applied to a data file
before it is delivered.

The client subscribes itself by supplying a Subscriber URL to the NGAS Data Provider.
NGAS delivers data to the client by performing a HTTP POST on the Subscriber URL.
The client must be ready to handle data file HTTP POST requests from the Data Provider.
Any HTTP based server can be used, from a simple customized implementation to an existing and widely used server like Apache.

An NGAS Server can be configured to subscribe to another NGAS Server. In this case the
Subscriber URL should be the URL used when performing an Archive Push Request:

http://<host>:<port>/QARCHIVE

Note that NgamsCfg.SubscriptionDef:Enable must be set to 1 to enable subscription.
It is possible to instruct an NGAS Server to un-subscribe itself automatically
when it goes Offline NgamsCfg.SubscriptionDef:AutoUnsubscribe set to 1.

When a client has first subscribed itself to a certain type of file,
NGAS guarantees that all files of that type (with the matching time constraint)
will be delivered to the client. If it is impossible to deliver a file
e.g. the client has terminated or the network is down,
NGAS maintains a subscription back-log which will try to periodically deliver the files to the client.
NgamsCfg.SubscriptionDef:SuspensionTime determines how often the NGAS server will process the back-log.

It is possible to specify an expiration time indicating for how long
files should be kept in the back-log NgamsCfg.SubscriptionDef.BackLogExpTime.
Files residing longer than the expiration time will be deleted and thus never delivered.
The name of the subscription back-log is defined by the parameter <NgamsCfg.Server:BackLogBufferDirectory>/subscr-back-log.

A simple scheme has been implemented to avoid the scenario where the same data file is delivered to the same subscriber multiple times.
This scheme is based on recording the ingestion date for the last file delivered. i.e., only files with a more
recent ingestion date will be taken into account. This remembered ‘last ingestion date’
for each subscriber will be reset if a start date for the subscription ‘older’ than this date is specified by a client.

SUBSCRIBE is the command used by Data Subscribers to subscribe to an NGAS server.

Parameters

	subscr_id: Subscription ID that should be unique.

	url: The URL to which the archived file(s) will be delivered.

	concurrent_threads: Number of simultaneous file data delivery threads.

	start_date: Date from which the data to deliver is taken into account. If not specified the time when the SUBSCRIBE command was received is taken as start date.

	priority: Priority for delivering data to this Data Subscriber. The lower the number, the higher the priority. Clients with a higher priority, get more CPU time in connection with the data delivery.

	filter_plug_in: Name of a Filter Plug-In to invoke on the file(s).

	plug_in_pars: A set of parameters to transfer to the Filter Plug-In when it is invoked.

Example:

curl http://localhost:8000/SUBSCRIBE?subscr_id=TEST&url=http://localhost:8889/QARCHIVE&priority=1&start_date=2016-03-01T00:00:00.000&concurrent_threads=4

This example has two NGAS instances running on the same node. One instance is bound to port 8000 and the other to port 8889.
The subscriber is telling the NGAS instance on 8000 to deliver all the files it ingested from the date 2016-03-01 to the present day using 4 concurrent delivery threads at the highest priority to NGAS instance 8889.

UNSUBSCRIBE

Used by Data Subscribers to unsubscribe to a previously established subscription.
If NGAS holds a back-log of data files for that subscription, that back-log will be cleared and data delivery will stop.

Parameters

	subscr_id: Subscription ID to unsubscribe.

 Configuration

Configuration

This section details the contents of the XML configuration file used by NGAS.

Each sub-section describes an XML Element,
while the items listed on each subsection refer to an attribute
unless specified otherwise.

All elements share an Id attribute to uniquely identify them.

For a sample configuration file
see the sample configuration file [https://github.com/ICRAR/ngas/blob/master/cfg/sample_server_config.xml]
shipped with NGAS.

Server

Contains the overall server configuration.

	RootDirectory: The root directory which most of the other configuration
items are relative to.

	ArchiveName: The logical name under which
disks found by the server are grouped into.
Using this, disks found in different servers
may belong to the same logically distributed archive.

	BlockSize: The block size used for disk and network access,
and checksum calculation.
In the future different configuration options may be offered
for these different operations.

	IpAddress: The IP address to bind the server to. If not specified the server
will bind itself to 127.0.0.1. To bind the server to all interfaces
0.0.0.0 can be set.

	PortNo: The port to bind the server to. It defaults to 7777 if unspecified.

	VolumeDirectory: The base directory where volumes are searched for.
It relative, it is considered relative to the NGAS root directory.
Defaults to ..

	MaxSimReqs: The maximum number of requests the server can be serving
at a given time. If a new request comes in and the server has reached
the limit already, it will respond with an 503 HTTP code.

	PluginsPath: A colon-separated list of directories
where external python code, like NGAS plug-ins or database drivers,
can be loaded from.

	ProxyMode: Whether this server should act as a proxy when serving requests that
are addressed to a different server within the same cluster (1)
or not (0).
See Proxy behavior for details.

	RequestDbBackend: The implementation of the request database
that should be used.
Allowed values are memory, bsddb and null.
See Requests database for details.
Defaults to null.

Permissions

This element defines the set of actions
this server is allowed to perform.

	AllowArchiveReq: Whether archiving is allowed on this server.

	AllowProcessingReq: Whether processing is allowed on this server.

	AllowRemoveReq: Whether removal of files is allowed on this server.

	AllowRetrieveReq: Whether retrieval of files is allowed on this server.

Db

This element contains the database connection parameters.

	Interface:
The python module implementing the PEP-249
Database API Specification v2.0.

	MaxPoolConnections:
The maximum number of connections to be contained in the connection pool.

	Snapshot:
Whether the snapshoting feature of NGAS will be turned on or off.
It is recommended to leave it off.

	UseFileIgnore:
Whether the code should use file_ignore or simply ignore
as the column name to store the ignore flag of files
in the ngas_files table.
The latter was used by some particular combinations
of old versions of the NGAS code and database engines,
while the former is the default nowadays.

	SessionSql:
Zero or more XML sub-elements,
each with an sql attribute denoting
an SQL statement that will be executed whenever
a physical connection is established
by the connection pool to the database server.
Usually these will not be required,
but can be useful, for instance,
if one needs to execute a command
to switch to a different database.

The rest of the attributes on the Db element
are used as keyword arguments to create connection
from the database module
selected with the Interface attribute,
and therefore don’t have fixed names on them
as they depend on the module in use.

For example, to connect to a PostgreSQL database
using the psycopg2 module
one could use:

<Db Id="db-config"
 Snapshot="0"
 UseFileIgnore="false"
 Interface="psycopg2"
 host="db_host.example.com"
 dbname="ngas_db"
 user="ngas_user"
 password="ngas_password"
/>

In the example,
the Snapshot, UserFileIgnore and Interface attributes
work as described above,
while host, dbname, user and password
are keyword arguments accepted by the psycopg2.connect method.

Commands

This element lists user-defined command plug-ins.
For details on commands in general
see the commands overview section.
For details on command plug-ins
see the commands plug-in section.

The Comands element contains zero or more
XML sub-elements named Command,
each of which must define the following attributes:

	Name: The command name, case-sensitive.

	Module: The python module implementing this command.

MimeTypes

Lists a mapping of filename extensions and mime types.
It contains one or more MimeTypeMap elements,
each one listing the following attributes:

	Extension: A filename extension.

	MimeType: The mime-type associated to that filename extension.

This information is used, for example,
by the ARCHIVE command
when no mime-type information has been sent by the user.

StorageSets

Lists the storage sets (i.e., groups of disks) available to NGAS.
Inside the StorageSets element one or many StorageSet elements
can be found, each one listing the following attributes:

	StorageSetId: The name this storage set can be referenced by.

	MainDiskSlotId: The name of the directory where the data will be stored.
If a relative path is given, it is considered to be relative to the NGAS
volumes directory.

	RepDiskSlotId: The name of the directory where the data will be replicated.
If a relative path is given, it is considered to be relative to the NGAS
volumes directory.

For an explanation on volumes, main/replication disks,
directories and storage sets
please read Storage organization.

Streams

Lists the mappings from data types to storage sets.
This element contains one or more Stream elements,
each of which lists the following attributes:

	MimeType: The data type of this stream.

	PlugIn: The plug-in used to process incoming data of this type.

	PlugInPars: An optional, comma-separated, key=value string
with parameters that can be communicated to the plug-in.

References to storage sets are included by adding StorageSetRef
sub-elements, each of which should have a StorageSetId attribute
pointing to the corresponding storage set.

For an explanation on streams please read Storage organization.

ArchiveHandling

Contains archiving-related configuration.
For an explanation on most of these terms
see Storage organization for reference.

	PathPrefix: The top-level directory on each volume
under which NGAS will store incoming data.

	Replication: Whether data will be replicated during archiving
from the Main disk to a Replication disk

	BackLogBuffering: whether data stored
during a failed ARCHIVE command
might be temporarily kept in storage
to try to finish its archiving later on in the background.

	BackLogBufferDirectory: The top-level directory on each volume
where backlogged files will be temporarily stored.

	CRCVariant: The CRC algorithm (and implementation) to use
to calculate the checksum of incoming files.
See CRC for details.
If not specified the server will use the crc32 variant. If specified,
0 means crc32, 1 means crc32c and 2 means crc32z.

	EventHandlerPlugIn: Zero or more sub-elements defining additional modules
that will handle archiving events.
Each element should have a Name attribute with the fully-qualified
class name implementing the plug-in,
and an optional PlugInPars attribute
with a comma-separated key=value definitions,
which are passed down to the class constructor as keyword arguments.

	FreeSpaceDiskChangeMb: How much available free space
in a disk will trigger an error notification to change that disk
(see Notification for details).

	MinFreeSpaceWarningMb: Minimum amount of free space a disk should have.
If a disk has less free space than that
a warning email is sent (see Notification).

Processing

The Processing element defines the behavior
of the optional on-the-fly processing capabilities
attached to the RETRIEVE command.
The following attributes are supported:

	ProcessingDirectory: The directory
(potentially relative to the NGAS root directory)
where a processing directory will be created on,
under which temporary files used during on-the-fly processing
will be put under.

Under the Processing element,
one or more PlugIn sub-elements can be placed,
one per processing plug-in to be declared.
Each PlugIn element accepts the following attributes:

	Name: The name of the python module
(with a similarly-named function)
where the plug-in is implemented.

	PlugInPars: A comma-separated list
of key=value parameter definitions
to be passed to the plug-in.

Finally, inside each PlugIn element
one or more MimeType elements can be added
to specify which MIME types will be processed by the plug-in.
Each MimeType element needs to have a Name attribute
with specifying the MIME type.

Register

The Register element configures
the plug-ins to be used by the REGISTER command.

Plug-ins are configured per mime-type.
Like Processing,
one or more PlugIn sub-elements can be placed
under the Register element,
following the same guidelines.

Notification

The Notification element defines the behavior
of the server email notifications.
The following attributes are available:

	Active: Whether notifications are enabled or not.
Note that even if disabled, there are some notifications
(that are considered too important to be missed)
that will still be sent.

	SmtpHost: The SMTP host to use as the email agent.

	Sender: The email address that will appear
in the Sender: field of emails sent by this mechanism.

	MaxRetentionTime: Maximum amount of time
an undelivered email will be internally kept for
before the system decides not to deliver it.

	MaxRetentionSize: Maximum amount of undelivered emails
the system will keep internally
before it starts dropping old emails.

Emails resulting from different events
can be configured to be sent to one or more
email addresses.
This is done
by defining EmailRecipient elements,
each with an Address attribute
whose value is the target email address.
These EmailRecipient elements are then added as children
of the following sub-elements of Notification:

	AlertNotification: (Deprecated) Never sent.

	ErrorNotification: Sent in a number
of different error situations.

	DiskSpaceNotification: Sent when, during operations,
one or more disk are found to have less free space
than the configured amount (see ArchiveHandling).

	DiskChangeNotification: Sent when a disk is full,
potentially requiring a change.

	NoDiskSpaceNotification: Sent when, during operations,
no sufficient space can be found in one or more disks.

	DataCheckNotification: Sent by the Data check thread
informing about the results of the data checking process.
Normally sent only if there are errors to be reported,
but can be configured to be always sent
(see DataCheckThread)

Below is an example
illustrating a valid configuration:

<Notification Id="Notification"
 Active="0" MaxRetentionSize="1" MaxRetentionTime="00T00:30:00"
 Sender="ngas@host.com" SmtpHost="localhost">
 <AlertNotification>
 <EmailRecipient Address="address@example.com"/>
 </AlertNotification>
 <ErrorNotification>
 <EmailRecipient Address="address@example.com"/>
 </ErrorNotification>
 <DiskSpaceNotification>
 <EmailRecipient Address="address@example.com"/>
 </DiskSpaceNotification>
 <DiskChangeNotification>
 <EmailRecipient Address="address@example.com"/>
 </DiskChangeNotification>
 <NoDiskSpaceNotification>
 <EmailRecipient Address="address@example.com"/>
 </NoDiskSpaceNotification>
 <DataCheckNotification>
 <EmailRecipient Address="address@example.com"/>
 </DataCheckNotification>
</Notification>

JanitorThread

The JanitorThread element defines the behavior
of the Janitor Thread
(now actually implemented as a separate process).
The following attributes are available:

	SuspensionTime: The sleep time after a janitor cycle.

	MinSpaceSysDirMb: The minimum space to be found on each volume during each
cycle. If not enough space is found the system is sent to OFFLINE state.

	PlugIn: An XML sub-element with a Name attribute, naming a python module
where a Janitor plug-in resides. Multiple Plugin elements can be defined.

DataCheckThread

The DataCheckThread element defines the behavior
of the Data check thread.
The following attributes are available:

	Active: Whether the data-check thread should be allowed to run or not.

	MaxProcs: Maximum number of worker processes used to carry out the data
checking work load.

	MinCycle: The time to leave between data-check cycles.

	ForceNotif: Forces the sending of a notification report after each
data-check cycle, even if not problems were found.

	Scan: Whether files should be scanned only (1) or actually checksumed (0).

The following attributes are present in old configuration files
but are not used anymore: FileSeq, DiskSeq, LogSummary, Prio,
ChecksumPlugIn (see CRCVariant instead)
and ChecksumPlugInPars.

Caching

The Caching element defines the behavior
of the cache control thread.
When enabled, it is said that the NGAS server
is running in cache mode.
The following attributes are available:

	Enable: Whether the cache control thread should run or not.

	Period: The period at which the cache control thread runs.

	MaxTime: The maximum time files can stay in the cache.

	MaxCacheSize: The maximum total allowed volume of files in the cache.

	MaxFiles: The maximum allowed number of files in the cache.

	CacheControlPlugIn: A user-provided cache deletion plug-in
that decides whether individual files
should be marked for deletion.

	CacheControlPlugInPars: Parameters for the plug-in above.

	CheckCanBeDeleted: Check if a file marked for deletion
has been sent to all subscribers yet
before actual deletion occurs.

Log

The server outputs its logs to stdout, to a file, and to syslog,
all of which are optional.
The Log element of the configuration file
contains the details to configure the server logging output.

	LocalLogFile: The file where the logs are dumped to. If given as a
relative path it is relative to the NGAS root directory.

	LocalLogLevel An integer from 1 to 5 indicating the log levels that the server
should output to LocalLogFile.

	LogRotateInt: The interval after which the LocalLogFile is rotated.
Specified as THH:mm:SS. Defaults to 10 minutes.

	LogRotateCache: The amount of rotated files to retain. If more rotated files
are found, they are removed by the system.

	SysLog: An integer indicating whether syslog logging is enabled
(1) or disabled (0).

	SysLogPrefix: The string used as prefix for all syslog messages.

	SysLogAddress: The address where the syslog messages should be sent to.
If not specified a platform-dependent default value is used.

	ArchiveRotatedLogfiles: An integer indicating whether rotated logfiles
should be locally archived by NGAS (1) or not (0). Defaults to 0.

	LogfileHandlerPlugIn: Zero or more sub-elements defining additional modules
that will handle rotated logfiles. Each element should have a Name
attribute with the fully-qualified module name implementing the plug-in inside
a run method, and a PlugInPars element with a comma-separated,
key=value pairs.

Authorization

The Authorization element defines the authentication and authorization rules
that the NGAS server will follow when receiving commands from clients.
For details see Authorization.

The Authorization element has an Enable attribute
which determines whether authentication and authorization
is enabled (1) or not (0).
The Authorization element also has an Exclude attribute
for defining a list of commands that are to be excluded from
authoriztion.
Zero or more User XML sub-elements
also describe a different user recognized by NGAS.
Each User element should have the following attributes:

	Name: The username.

	Password: The base64-encoded password.

	Commands: A comma-separated list of commands this user is allowed to
execute. The special value * is interpreted as all commands.

SubscriptionAuth

The SubscriptionAuth element defines the authentication/authorisation
configuration to use when acting as a client when using the subscription
service. Currently it has only one element PlugInName, which follows the
usual rules for plugins as noted above, with PlugInName being the name of
the module to import. This module should have a callable which matches with the
signature:

	
ngas_subscriber_auth(filename, url)

	Provides authentication information needed to send filename to url.

This function should return an object that can be handled by the auth
keyword argument of requests.requests, which is generally either a string,
or an instance of requests.auth.AuthBase. None can be returned in
the case where the authentication is not needed.

	Parameters:

	
	filename (str) – The filename to be sent

	url (str) – The url to send the filename to

	Returns:

	An object used by requests to authenticate the connection

	Return type:

	requests.auth.AuthBase, None, str

HostSuspension

The HostSuspension element defines
the behavior of the server suspension.
The following attributes are defined:

	IdleSuspension: Whether suspension is enabled (1) or not (0).

	IdleSuspensionTime: The amount of idle time
after which a server will suspend itself.

	SuspensionPlugIn and SuspensionPlugInPars:
The plug-in used to perform suspension, and its parameters.

	WakeUpServerHost: The server in charge
of waking up server that are idling.

	WakeUpPlugIn and WakeUpPlugInPars:
The plug-in used to perform the wake-up, and its parameters.

	WakeUpCallTimeOut: Maximum amount of time
that a wake up call should take.
If a server cannot be woken up after this timeout
it is considered to be still idling.

SystemPlugIns

The SystemPlugIns element defines
a collection of system-level plug-ins.
These plug-ins are used for different purposes,
either by a command or by the core system.
The *PlugIn attributes name
a python module that offers a function with the same name,
while the *PlugInPars attributes
are a comma-separated key=value parameter pairs:

	LabelPrinterPlugIn and LabelPrinterPlugInPars:
The plug-in that brings hardware-specific capabilities
to the LABEL command.

	OfflinePlugIn and OfflinePlugInPars:
The plug-in used to bring the server to OFFLINE state
(see States).

	OnlinePlugIn and OnelinePlugInPars:
The plug-in used to bring the server to ONLINE state
(see States).

	DiskSyncPlugIn and DiskSyncPlugInPars:
The plug-in used to perform a full disk sync.

PartnerSites

The PartnerSites element defines a list of alternative
(remote) NGAS servers belonging to separate NGAS archive
installations. When a request to retrieve a file cannot be
found on the local NGAS archive the request is redirected
to the NGAS servers included in the partner sites list.
The ProxyMode attribute can be used to enable/disable
partner sites.
Several PartnerSite child elements can be added containing
the Address attribute for the remote NGAS server address.

 API

API

This is a very reduced version
of the API documentation of NGAS.
It should be helpful for users
wanting to develop plug-ins for the system.

	Database access
	Core database access

	Higher-level abstractions

	Configuration

	Server classes

 Database access

Database access

Contents

	Database access

	Core database access

	Higher-level abstractions

Core database access

These are the core classes implementing the core database access logic,
including dealing with connections, cursors and transactions.
For the higher-level database object
offered by the ngamsServer.ngamsServer.ngamsServer class
please see Higher-level abstractions.

	
class ngamsLib.ngamsDbCore.ngamsDbCore(interface, parameters={}, createSnapshot=1, maxpoolcons=6, use_file_ignore=True, session_sql=None)

	Core class for the NG/AMS DB interface.

	
close()

	Close the DB pool.

Returns: Void.

	
dbCursor(sqlQuery, args=())

	Create a cursor on the given query and return the cursor object.

	
query2(sqlQuery, args=())

	Takes an SQL query and a tuple of arguments to bind to the query

	
transaction()

	Creates a new transaction object and return it

	
class ngamsLib.ngamsDbCore.cursor2(pool, query, args)

	A cursor that yields values and acts as a context manager

	
close()

	Closes the underlying cursor and connection

	
fetch(howmany)

	Fetches at most howmany results from the database at a given time,
yielding them instead of returning them as a sequence. This makes
client code simpler to write.

	
class ngamsLib.ngamsDbCore.transaction(db_core, pool)

	A context manager that allows multiple SQL queries to be executed
within a single transaction

	
execute(sql, args=())

	Executes sql using args

Higher-level abstractions

	
ngamsLib.ngamsDb.from_config(cfg, maxpool=None)

	Create a database object from a configuration object. If maxpool is not
None, it overrides the value loaded from the configuration for the number
of connections held by the pool.

	
class ngamsLib.ngamsDb.ngamsDb(interface, parameters={}, createSnapshot=1, maxpoolcons=6, use_file_ignore=True, session_sql=None)

	Front-end class for the DB access module.

This class inherits from all the DB sub-classes (which in turn inherit from
ngamsDbCore), thus exposing to the rest of the software a single class that
implements all the database logic.

	
addDbChangeEvt(evtObj)

	Add an Event Object (threading.Event) that will be triggered to
indicate other threads that DB changes where introdiced.

evtObj: Event object (threading.Event).

Returns: Reference to object itself.

	
addDiskHistEntry(hostId, diskId, synopsis, descrMimeType=None, descr=None, origin=None, date=None)

	Add an entry in the NGAS Disks History Table (ngas_disks_hist)
indicating a major action or event occurring in the context of a disk.

dbConObj: Instance of NG/AMS DB class (ngamsDbBase).

diskId: Disk ID for the disk concerned (string).

	synopsis: A short description of the action

	(string/max. 255 char.s).

	descrMimeType: The mime-type of the contents of the description

	field. Must be specified when a description is
given (string).

	descr: An arbitrary long description of the action or event

	in the life-time of the disk (string).

	origin: Origin of the history log entry. Can either be the

	name of an application or the name of an operator.
If not specified (= None) it will be set to
‘NG/AMS - <host name>’ (string).

	date: Date for adding the log entry. If not specified (set

	to None), the function takes the current date and
writes this in the new entry (string/ISO 8601).

Returns: Void.

	
addFileToContainer(containerId, fileId, force)

	Adds the file pointed by fileId to the container
pointed by containerId. If the file doesn’t exist an
error will be raised. If the file is currently associated
with a container and the force flag is not True an
error will be raised also.

This method returns the uncompressed size of the file just
added to the container. This can then be used to update the total
size of the container

	Parameters:

	
	containerId (str) – the id of the container where the file will be added

	fileId (str) – the id of the file to add to the container

	force (bool) – force the operation

	Returns:

	the uncompressed file size of the file denoted by fileId

	
addSrvList(srvList)

	Add a server list in the NGAS Server List Table and allocate a unique
server list ID for it.

srvList: List of servers to add (string).

Returns: New server list ID (integer).

	
addSubscrBackLogEntry(hostId, portNo, subscrId, subscrUrl, fileId, fileName, fileVersion, ingestionDate, format)

	Adds a Back-Log Entry in the DB. If there is already an entry
for that file/Subscriber, a new entry is not created.

	hostId: Host ID for NGAS host where Data Provider concerned

	is running (string).

portNo: Port number used by Data Provider concerned (integer).

	subscrUrl: Susbcriber URl to where the files are delivered

	(string).

subscrId: Subscriber ID (string).

fileId: File ID (string).

	fileName: Filename, i.e., name of file as stored in the

	Subscription Back-Log Area (string).

fileVersion: File Version (integer).

ingestionDate: File Ingestion Date (string/ISO 8601).

format: Mime-type of file (string).

Returns: Void.

	
addToContainerSize(containerId, amount)

	Updates the size of the indicated container by the given amount

	
asTimestamp(t)

	Returns None if timestamp is None, otherwise calls convertTimeStamp

	
buildFileSummary1Query(columns, hostId=None, diskIds=[], fileIds=[], ignore=None, fileStatus=['00000000'], lowLimIngestDate=None, order=1)

	Builds the SQL query for a File Summary1 query. The fields to be
selected are left open (specified as %s).

For a description of the input parameters, check the man-page of
ngamsDbBase.getFileSummary1().

Returns: SQL query for a File Summary 1 Query (string).

	
close()

	Close the DB pool.

Returns: Void.

	
closeContainer(containerId)

	Marks the container as “closed”; that is, it sets an
ingestion date on it equals to the current time

	
containerExists(containerId)

	Returns whether the container with ID containerId
exists (True) or not (False).

	Parameters:

	containerId – string

	
convertTimeStamp(t)

	Convert a timestamp given in one of the following formats:

	
createContainer(containerName, containerSize=0, ingestionDate=None, parentContainerId=None, parentKnownToExist=False)

	Creates a single container with name containerName.
The ingestionDate parameter given to this method is a floating
point number representing the number of seconds since
the UNIX epoch, as returned by time.time()

If parentContainerId is given the new container will
point to it as its parent. The parent container ID is
checked for existence, unless parentKnownToExist indicates
that the check is not necessary

	Parameters:

	
	containerName – string

	containerSize – integer

	ingestionDate – float

	parentContainerId – string

	parentKnownToExist – bool

	Returns:

	uuid.uuid4

	
createDbFileChangeStatusDoc(hostId, operation, fileInfoObjList, diskInfoObjList=[])

	The function creates a pickle document in the ‘<Disk Mt Pt>/.db/cache’
directory from the information in the ‘fileInfoObj’ object.

	operation: Has to be either ngams.NGAMS_DB_CH_FILE_INSERT or

	ngams.NGAMS_DB_CH_FILE_DELETE (string).

	fileInfoObj: List of instances of NG/AMS File Info Object

	containing the information about the file
(list/ngamsFileInfo).

	diskInfoObjList: It is possible to give the information about the

	disk(s) in question via a list of ngamsDiskInfo
objects (list/ngamsDiskInfo).

Returns: Void.

	
createDbRemFileChangeStatusDoc(diskInfoObj, fileInfoObj)

	The function creates a File Removal Status Document with the
information about a file, which has been removed from the DB and
which should be removed from the DB Snapshot for the disk concerned.

	diskInfoObj: Disk Info Object with info for disk concerned

	(ngamsDiskInfo).

	fileInfoObj: Instance of NG/AMS File Info Object

	containing the information about the file
(ngamsFileInfo).

Returns: Void.

	
dbCursor(sqlQuery, args=())

	Create a cursor on the given query and return the cursor object.

	
delSubscrBackLogEntries(hostId, portNo, subscrId)

	Delete all entries to be delivered to a subscriber with subscrId

	Parameters:

	
	hostId (str) – Host ID for NGAS host where Data Provider concerned
is running.

	portNo (int) – Port number used by Data Provider concerned

	subscrId (str) – Subscriber ID

	
delSubscrBackLogEntry(hostId, portNo, subscrId, fileId, fileVersion)

	Delete an entry in the Subscription Back-Log Table.

	hostId: Host ID for NGAS host where Data Provider concerned

	is running (string).

portNo: Port number used by Data Provider concerned (integer).

subscrId: Subscriber ID (string).

fileId: File ID (string).

fileVersion: File Version (string).

	fileName: Filename, i.e., name of file as stored in the

	Subscription Back-Log Area (string).

Returns: Void.

	
deleteCacheEntry(diskId, fileId, fileVersion)

	Delete an entry from the NGAS Cache Table.

diskId: Disk ID for the cached data object (string).

fileId: File ID for the cached data object (string).

fileVersion: Version of the cached data object (integer).

Returns: Reference to object itself.

	
deleteDiskInfo(diskId, delFileInfo=1)

	Delete a record for a certain disk in the NGAS DB.

	CAUTION: IF THE DB USER WITH WHICH THERE IS LOGGED IN HAS PERMISSION

	TO EXECUTE DELETE STATEMENTS, THE INFORMATION ABOUT THE
DISK IN THE NGAS DB WILL BE DELETED! THIS INFORMATION
CANNOT BE RECOVERED!!

diskId: ID of disk for which to delete the entry (string).

	delFileInfo: If set to 1, the file information for the files

	stored on the disk is deleted as well (integer/0|1).

Returns: Reference to object itself.

	
deleteFileInfo(hostId, diskId, fileId, fileVersion, genSnapshot=1)

	Delete one record for a certain file in the NGAS DB.

	CAUTION: IF THE DB USER WITH WHICH THERE IS LOGGED IN HAS PERMISSION

	TO EXECUTE DELETE STATEMENTS, THE INFORMATION ABOUT THE
FILE(S) IN THE NGAS DB WILL BE DELETED! THIS INFORMATION
CANNOT BE RECOVERED!!

diskId: ID of disk hosting the file (string).

	fileId: ID of file to be deleted. No wildcards accepted

	(string).

fileVersion: Version of file to delete (integer)

genSnapshot: Generate Db Snapshot (integer/0|1).

Returns: Reference to object itself.

	
deleteSubscriber(subscrId)

	Delete the information for one Subscriber from the NGAS DB.

subscrId: Subscriber ID (string).

Returns: Reference to object itself.

	
destroySingleContainer(containerId, checkForChildren)

	Destroys a single container with id containerId.

If the container contains subcontainers an error is issued.

Before destroying the container, all files associated to the
container are removed from it first. If the container has
subcontainers, it is not removed though

	Parameters:

	
	containerId – string

	checkForChildren – bool

	
diskInDb(diskId)

	Check if disk with the given Disk ID is available in the DB.

diskId: Disk ID (string).

Returns: 1 = Disk ID was found, 0 = Disk ID not found (integer).

	
dumpFileInfoCluster(clusterName, fileInfoDbmName=None, useFileKey=False, count=False)

	Dump the info for the files registered in the name space of the
referenced cluster.

Note, all files in the cluster are taken, also the ones marked
as bad or to be ignored.

clusterName: Name of cluster to consider (string).

	fileInfoDbmName: Base name of the DBM in which the file info will be

	stored. If not given, a name will be generated
automatically (string).

	useFileKey: Use a file key (<File ID>_<Version>) as key as

	opposed to just an integer key. NOTE: Multiple
occurrences of a given File ID/Version will only
appear once (boolean).

	count: When useFileKey == True, if count is True, the

	number of ocurrences of each File ID + Version
is counted and an entry added in the DBM:

<File Key>__COUNTER

pointing to a counter indicating the number of
occurrences. Note, the usage of ‘__’ in the name of
the counter for each file, means it will be skipped
when doing a ngamsDbm.getNext(), scanning through
the contents of the DBM (boolean).

	Returns: Final name of the DBM DB containing the info about

	the files (string).

	
dumpMirroringQueue(instanceId)

	Dump the entire contents of the DB Mirroring Queue into a DBM
in raw format.

	Returns: Name of DBM hosting the contents of the DB Mirroring

	Queue (string).

	
fileInDb(diskId, fileId, fileVersion=-1)

	Check if file with the given File ID is registered in NGAS DB
in connection with the given Disk ID.

diskId: Disk ID (string)

fileId: File ID (string).

	fileVersion: Version of the file. If -1 version is not taken

	into account (integer).

Returns: 1 = file found, 0 = file no found (integer).

	
files_in_host(hostId, from_date=None)

	Dump the info of the files defined by the parameters. The file info is
dumped into a ngamsDbm DB.

For the parameters check man-page for: ngamsDbBase.getFileSummary1().

	Returns: Name of the DBM DB containing the info about the files

	(string).

	
fromTimestamp(timestamp)

	Converts a database timestamp into a number of seconds from the epoch.
This is the reverse of asTimestamp.

	
getAvailableVolumes(hostId)

	Returns a list of rows for all disks that are not marked as completed
on hostId.

	
getBestTargetDisk(diskIds, mtRootDir)

	Find the best suitable target disk among a set of disks referred
to by their Disk IDs. The condition is:

Get ID for disk that is most full, which is Main Disk, mounted, has
a Host ID corresponding to this host ID, which is not completed,
which has the lowest Slot ID and which has the Disk ID among the set
of disks defined for the given mime-type.

diskIds: List with Disk IDs to probe for (list).

mtRootDir: Base diretory for the NG/AMS Server (string).

Returns: Disk ID or None if no matches were found (string)

	
getCacheContents(hostId)

	Execute query by means of a cursor, with which the entire contents
of the cache can be downloaded.

hostId: Name of host to consider (string).

	Returns: Cursor object with which the contents can be retrieved

	Cursor object (<NG/AMS DB Cursor Object API>).

	
getCfgPars(name)

	Return the list of configuration parameters from the DB associated
to the given name.

name: Name of the configuration association (string).

Returns: List with sub-lists with the information. The format is:

[[<Group ID>, <Parameter>, <Value>, <Comment>], …]

(list).

	
getClusterNameFromHostId(hostId)

	Get the Cluster Name to which a node belongs from its Host ID.

hostId: Host ID (string).

Returns: Cluster Name (string).

	
getClusterReadyArchivingUnits(clusterName)

	Return list of NAUs in the local cluster with archiving capability
(archiving enabled + have capacity).

The resulting list of nodes will be formatted as:

[<Node>:<Port>, …] (list).

clusterName: Name of cluster to consider (string).

Returns: List with ready NAU nodes in the cluster (list/string).

	
getContainerIdForUniqueName(containerName)

	Returns the ID of the container that can be uniquely identified
by containerName. If no container with such a name exists, or if
more than one exists, an error is raised

	Parameters:

	containerName – string

	Returns:

	string

	
getContainerName(containerId)

	Returns the name of the container pointed by containerId.
If no container with such ID exists, an error is raised

	Parameters:

	containerId – string

	
getCreateDbSnapshot()

	Return the flag indicating if a DB Snapshot should be created or not.

Returns: Value of the DB Snapshot Creation Flag (boolean).

	
getDbTime()

	Return the time spent for the last DB access.

Returns: Last DB access time in seconds (float).

	
getDiskCompleted(diskId)

	Check if a disk is marked in the NGAS DB as completed.

diskId: ID of the disk (string).

	Returns: 1 = completed, 0 = not completed. If the disk

	is not registered None is returned (integer).

	
getDiskIdFromSlotId(host, slotId)

	Get a Disk ID for corresponding Slot ID and host name.

host: Host name (string).

slotId: ID of slot (string).

Returns: Disk ID or None if no match found (string).

	
getDiskIds()

	Query the Disk IDs contained in the NGAS DB and return these in a list.

Returns: List with Disk IDs (list).

	
getDiskIdsMountedDisks(host, mtRootDir)

	Get the Disk IDs for the disks mounted on the given host. A list is
returned, which contains the Disk IDs of the disks mounted.

host: Name of host where the disk must be mounted (string).

mtRootDir: Base directory for NG/AMS (string).

Returns: List with Disk IDs (list).

	
getDiskIdsMtPtsMountedDisks(host)

	Get the mount points for the disks mounted on the given host.
A list is returned, which contains the Logical Names of the disks
mounted.

host: Name of host where the disk must be mounted (string).

	Returns: List with tuples containing Disk IDs and Mount

	Points (list/tuple).

	
getDiskInfoForSlotsAndHost(host, slotIdList)

	From a given host and a given list of Slot IDs, the method
returns a list with the disk info for the disks matching these.

	host: Host name where the disks considered must be

	mounted (string).

slotIdList: List of Slot IDs for the disk considered (list).

	Returns: List with Disk Info objects or [] if no matches

	were found (list/ngamsDiskInfo).

	
getDiskInfoFromDiskId(diskId)

	Query the information for one disk (referred to by its ID), and
return this in raw format.

The information about the disk is stored in a list with the
the lay-out following the sequence as listed in the overall man-page
for the ngamsDbBase class.

diskId: ID of the disk (string).

	Returns: Disk information for the disk or [] if disk was

	not found (list).

	
getDiskInfoFromDiskIdList(diskIdList)

	Get disk information from a list of Disk IDs given. The result is
returned in a list containing again lists with the field as described
in documentation for ngamsDbBase.getDiskInfoFromDiskId().

diskIdList: List with Disk IDs (list/string).

Returns: List with disk information (list/list).

	
getFileChecksum(diskId, fileId, fileVersion)

	Get the checksum for the file.

diskId: ID of disk hosting the file (string).

	fileId: ID of file to be deleted. No wildcards accepted

	(string).

fileVersion: Version of file to delete (integer)

Returns: checksum (string | None).

	
getFileChecksumValueAndVariant(diskId, fileId, fileVersion)

	Get the checksum value and variant for the file.

diskId: ID of disk hosting the file (string).

	fileId: ID of file to be deleted. No wildcards accepted

	(string).

fileVersion: Version of file to delete (integer)

Returns: checksum (string | None).

	
getFileInfoFromDiskIdFilename(diskId, filename)

	The method queries the file information for a file referred to by the
Disk ID for the disk hosting it and the filename as stored in the
NGAS DB.

diskId: ID for disk hosting the file (string).

filename: NGAS (relative) filename (string).

	Returns: Return ngamsFileInfo object with the information for the

	file if found or None if the file was not found
(ngamsFileInfo|None).

	
getFileInfoFromFileId(fileId, fileVersion=-1, diskId=None, ignore=None, dbCursor=1, order=1, order2=0)

	The method queries the file information for the files with the given
File ID and returns the information found in a list containing
sub-lists each with a list with the information for the file from the
ngas_files table, host ID and mount point. The following rules are
applied when determining which files to return:

o All files are considered, also files which are Offline.

o Files marked to be ignored are ignored.

o Latest version - first priority.

It is possible to indicate if files marked as being ‘bad’ in the
DB should be taken into account with the ‘ignoreBadFiles’ flag.

If a specific File Version is specified only that will be
taken into account.

The data can be retrieved via the DB Cursor returned by this object.
The format of each sub-result is:

[<see getFileInfoFromFileIdHostId()>, <host ID>, <mnt pt>]

fileId: File ID for file to be retrieved (string).

	fileVersion: If a File Version is specified only information

	for files with that version number and File ID
are taken into account. The version must be a
number in the range [1; oo[(integer).

	diskId: ID of disk where file is residing. If specified

	to None (or empty string) the Disk ID is not taken
into account (string).

	ignore: If set to 0 or 1, this value of ignore will be

	queried for. If set to None, ignore is not
considered (None|0|1).

	dbCursor: If set to 1, a DB cursor is returned from which

	the files can be retrieved. Otherwise the result
is queried and returned in a list (0|1/integer).

	order: If set to 0, the list of matching file information

	will not be order according to the file version
(integer/0|1).

	Returns: Cursor object or list with results

	(<NG/AMS DB Cursor Object API>|list).

	
getFileInfoFromFileIdHostId(hostId, fileId, fileVersion=1, diskId=None, ignore=None)

	Return list with information about a certain file referenced
by its File ID. A list is returned with the following elements:

	[<Disk ID>, <Filename>, <File ID>, <File Version>, <Format>,

	<File Size>, <Uncompressed File Size>, <Compression>,
<Ingestion Date>, <Ignore>, <Checksum>, <Checksum Plug-In>,
<File Status>, <Creation Date>]

	hostId: Name of host where the disk is mounted on

	which the file is stored (string).

fileId: ID for file to acquire information for (string).

	fileVersion: Version of the file to query information

	for (integer).

diskId: Used to refer to a specific disk (string).

	ignore: If set to 0 or 1, this value of ignore will be

	queried for. If set to None, ignore is not
considered (None|0|1).

	Returns List with information about file, or [] if

	no file(s) was found (list).

	
getFileInfoList(diskId, fileId='', fileVersion=-1, ignore=None, fetch_size=1000)

	The function queries a set of files matching the conditions
specified in the input parameters.

diskId: Disk ID of disk hosting the file(s) (string).

	fileId: File ID of files to consider. Wildcards can be

	used (string).

	fileVersion: Version of file(s) to consider. If set to -1 this

	is not taken into account (integer).

	ignore: If set to 0 or 1, this value of ignore will be

	queried for. If set to None, ignore is not
considered (None|0|1).

Returns: Cursor object (<NG/AMS DB Cursor Object API>).

	
getFileSize(fileId, fileVersion)

	Get the ingestion date for the file.

diskId: ID of disk hosting the file (string).

	fileId: ID of file to be deleted. No wildcards accepted

	(string).

fileVersion: Version of file to delete (integer)

	Returns: Ingestion date for file or None if file not found

	(string/ISO 8601 | None).

	
getFileStatus(fileId, fileVersion, diskId)

	Get the file_status string (bit) value in the ngas_files table.

fileId: ID of file (string).

fileVersion: Version of file (integer).

diskId: Disk ID for disk where file is stored (string).

Returns: File Status (8 bits) (string).

	
getFileSummary1(hostId=None, diskIds=[], fileIds=[], ignore=None, fileStatus=['00000000'], lowLimIngestDate=None, order=1)

	Return summary information about files. The information is returned
in a list containing again sub-lists with contents as defined
by ngamsDbCore.getNgasSummary1Cols() (see general documentation of
the ngamsDbBase Class).

	hostId: Name of NGAS host on which the files reside

	(string).

	diskIds: Used to limit the query to certain disks

	(list/string).

	fileIds: List of file IDs for which to query information.

	If not specified, all files of the referenced
host will be chosen (list/string|[]).

	ignore: If set to 0 or 1, this value of ignore will be

	queried for. If set to None, ignore is not
considered (None|0|1).

	fileStatus: With this parameter it is possible to indicate which

	files to consider according to their File Status
(list).

	lowLimIngestDate: Lower limit in time for which files are taken into

	account. Only files with an Ingestion Date after
this date, are taken into account (string/ISO 8601).

	order: Used to trigger ordering by Slot ID + Ingestion Date

	(integer/0|1).

Returns: Cursor object (<NG/AMS DB Cursor Object API>).

	
getFileSummary1SingleFile(diskId, fileId, fileVersion)

	Same as getFileSummary1() but for a single (specific) file.

Returns: List with information from query (list).

	
getFileSummary2(hostId=None, fileIds=[], diskId=None, ignore=None, ing_date=None, max_num_records=None, upto_ing_date=None, fetch_size=1000)

	Return summary information about files. An NG/AMS DB Cursor Object
is created, which can be used to query the information sequentially.

The information is returned in a list containing again sub-lists
with contents as defined by ngamsDbBase._sum2Cols (see general
documentation of the ngamsDbBase Class.

This method returns all the files stored on an NGAS system also
the ones with a File Status indicating that it is bad.

	hostId: Name of NGAS host on which the files reside. If

	None is specified, the host is not taken into
account (string or a list of string).

	fileIds: List of file IDs for which to query information.

	If not specified, all files of the referenced
host will be chosen (list/string|[]).

	diskId: Used to refer to all files on a given disk

	(string|None).

	ignore: If set to 0 or 1, this value of ignore will be

	queried for. If set to None, ignore is not
considered (None|0|1).

max_num_records: The maximum number of returned records (if presented) (int)

Returns: Cursor object (<NG/AMS DB Cursor Object API>).

	
getFileSummary3(fileId, hostId=None, domain=None, diskId=None, fileVersion=-1, cursor=True, include_compression=False)

	Return information about files matching the conditions which are not
in ignore and which are not marked as bad.

Files are ordered by the File Version (descending).

The resulting file information will be:

<Host ID>, <Ip Address>, <Port>, <Mountpoint>, <Filename>,
<File Version>, <format>

fileId: ID of file to retrieve (string).

hostId: Host ID of node hosting file (string|None).

domain: Domain in which the node is residing (string|None).

diskId: Disk ID of disk hosting file (string|None).

fileVersion: Version of file to retrieve (integer).

cursor: Return DB cursor rather than the results (boolean).

Returns: Cursor object (<NG/AMS DB Cursor Object API>).

	
getFileSummarySpuriousFiles1(hostId=None, diskId=None, fileId=None, fileVersion=None, fetch_size=1000)

	Return summary information about spurious files, i.e. files registered
in the DB as to be ignored and/or having a status indicating that
they’re not OK. The information is returned in a list containing
again sub-lists with contents as defined by
ngamsDbBase.getNgasSummary1Cols() (see general documentation of the
ngamsDbBase Class.

	hostId: Name of NGAS host on which the files reside

	(string).

diskId: Disk ID of disk to take into account (string|None).

	fileId: File ID of file(s) to take into account

	(string|None).

	fileVersion: Version of file(s) to take into account

	(integer|None).

Returns: Cursor object (<NG/AMS DB Cursor Object API>).

	
getHostIdsFromClusterName(clusterName)

	Return the list of host IDs within the context of a given cluster.

clusterName: Name of cluster to consider (string).

Returns: List with nodes in the cluster (list/string).

	
getHostInfoFromHostIds(hostList)

	Return a dictionary with the information in connection with each host.
If for a host ID given, no information is found in the NGAS Hosts
Table, the value for this wil be None.

hostList: List of host IDs (list/string).

	Returns: List with sub-lists containing the information about the

	hosts from the NGAS Hosts Table (list).

	
getIngDate(diskId, fileId, fileVersion)

	Get the ingestion date for the file.

diskId: ID of disk hosting the file (string).

	fileId: ID of file to be deleted. No wildcards accepted

	(string).

fileVersion: Version of file to delete (integer)

	Returns: Ingestion date for file or None if file not found

	(string/ISO 8601 | None).

	
getIpFromHostId(hostId)

	Get the IP Address of a host from its Host ID.

hostId: Host ID (string).

Returns: IP Address (string).

	
getLastDiskCheck(hostId='')

	Queries all the Last Check Flags for all disks or for all disks
currently mounted in a specific host. A Dictionary is returned
containining the Disk IDs as keys, and the time for the last check
in seconds. If the value is NULL in the DB, it is set to 0.

	hostId: If specified, only disks mounted in this system are

	taken into account (string).

	Returns: Dictionary with entry for each disk. Key is Disk

	ID (dictionary).

	
getLatestFileVersion(fileId)

	The method queries the latest File Version for the file with the given
File ID. If a file with the given ID does not exist, -1 is returned.

fileId: File ID (string).

Returns: Latest File Version (integer).

	
getLogicalNameFromDiskId(diskId)

	Query the Logical Name of a disk from the DB, based on
the Disk ID of the disk.

diskId: Disk ID (string).

Returns: Logical Name or None if not found (string | None).

	
getLogicalNamesMountedDisks(host)

	Get the Logical Names for the disks mounted on the given host.
A list is returned, which contains the Logical Names of the disks
mounted.

host: Name of host where the disk must be mounted (string).

Returns: List with Logical Names (list).

	
getMaxDiskNumber(cat=None)

	Get the maximum disk index (number) in connection with the
Logical Disk Names in the DB.

cat: ‘M’ for Main, ‘R’ for Replication (string).

	Returns: The maximum disk number or None if this could not

	be generated (integer).

	
getMinLastDiskCheck(hostId)

	Get the timestamp for the disk that was checked longest time ago
for all disks mounted in a specific NGAS Host.

hostId: Host ID of the host to consider (string).

	Returns: Time since the ‘oldest’, last check (seconds since epoch)

	(integer).

	
getMtPtFromDiskId(diskId)

	Get the mount point for the disk referred to.

diskId: ID of the disk (string).

	Returns: Mount point of disk or None if not mounted or

	not found (string|None)

	
getNgasFilesMap()

	Return the reference to the map (dictionary) containing the mapping
between the column name and index of the ngas_files table.

Returns: Reference to NGAS Files Table name map (dictionary).

	
getNumberOfFiles(diskId='', fileId='', fileVersion=-1, ignore=None, onlyOnlineFiles=0)

	Get the number of files stored on a disk.

	diskId: Disk ID of disk to get the number of files for

	(string).

fileId: File ID for file to be retrieved (string).

	fileVersion: If a File Version is specified only information

	for files with that version number and File ID
are taken into account. The version must be a
number in the range [1; oo[(integer).

	ignore: If set to 0 or 1, this value of ignore will be

	queried for. If set to None, ignore is not
considered (None|0|1).

	onlyOnlineFiles: If specified, only files which are Online or on

	suspended nodes are considered (integer/0|1).

Return: Number of files stored on the disk (integer).

	
getPortNoFromHostId(hostId)

	Return the port number corresponding to the host ID.

hostId: Host ID (string).

Return: Port number (integer).

	
getSlotIdFromDiskId(diskId)

	Get the Slot ID for a disk, given by the Disk ID for the disk.

diskId: ID of the disk (string).

	Returns: Slot ID of disk. If disk is not found None is

	returned (string | None).

	
getSlotIdsMountedDisks(host)

	Get the Slot IDs for the disks mounted on the given host. A list is
returned, which contains the Slot IDs of the disks mounted.

host: Name of host where the disk must be mounted (string).

Returns: List with Slot IDs (list).

	
getSpaceAvailForHost(hostId)

	Return the amount of free disk space for the given host. This is
calculated as the total sum of free space for all non-completed volumes
mounted in this node, according to the DB.

hostId: Name of host (string).

Returns: Amount of free disk space in MB bytes (float)

	
getSrvDataChecking(hostId)

	Return flag indicating if server is executing a Data Consistency Check.

hostId: Host ID (string).

Returns: Server suspension flag (integer/0|1).

	
getSrvListFromId(srvListId)

	Get a server list from its ID. If no list with that ID is found,
None is returned.

srvListId: Server list ID (integer).

Returns: Server list associated with the given ID (string|None).

	
getSrvListIdFromSrvList(srvList)

	Get the server list ID associated with the server list. If not defined,
a new can be allocated in the NGAS Servers Table automatically.

srvList: Server list (‘<host>:<port>,…’) (string).

Returns: Server list ID (integer).

	
getSrvSuspended(contactAddr, ngasHostId=None)

	Return flag indicating if the server is suspended.

contactAddr: Host ID or IP address (string).

ngasHostId: NGAS Host ID, e.g. myhost:8888 (string).

Returns: Server suspension flag (integer/0|1).

	
getSubscrBackLog(hostId, portNo, selectDiskId=False)

	Read all entries in the Subscriber Back-Log Table ‘belonging’
to a specific Data Provider, and return these in a list with sub-lists.

hostId: Host ID of Data Provider (string).

portNo: Port number used by Data Provider (integer).

Returns: List containing sub-list with the following information:

	[[<Subscr. ID>, <Subscr. URL>, <File ID>, <Filename>,

	<File Version>, <Ingestion Date>,
<Format <Mime-Type>], …]

Note that the part of the list after the Subscriber URL
is the same as generated by ngamsDbBase.getFileSummary2()
(list/list).

	
getSubscrBackLogBySubscrId(subscrId)

	Get all entries in the Susbscriber Back-log Table
to be delivered to a specific subscriber

subscrId Subscriber Id

	Returns List containing sublist with the following information:

	[[<file_id>, <file_version>], …]

	
getSubscrBackLogCount(hostId, portNo)

	Read the number of entries in the Subscriber Back-Log Table ‘belonging’
to a specific Data Provider/Mover

hostId: Host ID of Data Provider (string).

portNo: Port number used by Data Provider (integer).

Returns: The number of records (integer)

	
getSubscrQueue(subscrId, status=None)

	Read all entries in the ngas_subscr_queue table ‘belonging’ to a
specific subscriber, and where the status meets the “status” condition

subscrId: subscriber Id (string)
status: the status of current file delivery (int or None)

	
getSubscriberInfo(subscrId=None, hostId=None, portNo=-1)

	Get the information for one or more Subcribers from the
ngas_subscribers table and return the contents in a list. The format
of this list is formatted as follows:

	[<Host ID>, <Port No>, <Priority>, <Subscriber ID>, <Subscriber URL>,

	<Subscription Start Date>, <Subscription Filter Plug-In>,
<Subscription Filter Plug-In Parameters>,
<Last File Ingestion Date>]

subscrId: ID of the Subcriber (string).

	hostId: Limit the query to Subscribers in connection with one

	host (Data Provider) (string).

	portNo: Limit the query to Subscribers in connection with one

	host (Data Provider) (integer).

	Returns: If a Subscriber ID is specified: List with information

	about the Subscriber (if found). Otherwise [] is returned
(list).

If no Subscriber ID is given: List with sub-lists with
information for all Subscribers. Otherwise [] is returned
(list/list).

	
getSubscriberStatus(subscrIds, hostId='', portNo=-1)

	Method to query the information about the Ingestion Date of the
last file delivered to the Subscriber. A list is returned, which
contains the following:

[(<Subscriber ID>, <Last File Ingestion Date (ISO 8601)>), …]

subscrIds: List of Subscriber ID to query (list/string).

hostId: Host name of Subscriber host (string).

portNo: Port number used by Subscriber host (integer).

Returns: List with Subscriber status (list/tuple/string).

	
getSumBytesStored(diskId)

	Get the total sum of the sizes of the data files stored on a disk
and return this.

diskId: Disk ID of disk to get the sum for (string).

Return: Total sum of bytes stored on the disk (integer).

	
getWakeUpRequests(hostId)

	Generates a tuple with suspended NGAS Hosts that have requested
to be woken up by this host.

	Returns: Tuple containing sub-tuples with information about hosts

	to be woken up:

(({host id}, {wake-up time (secs since epoch)}), …)

(list/tuple)

	
hasCfgPar(groupId, parName)

	Return 1 if the given configuration parameter (given by its
Simplified XPath name) and Configuration Group ID is defined in the
configuration table in the DB.

groupId: Group ID for the parameter (string).

parName: Name of parameter (string).

	Returns: 1 = parameter defined, 0 = parameter not defined

	(integer/0|1).

	
insertCacheEntry(diskId, fileId, fileVersion, cacheTime, delete)

	Insert a new cache entry into the NGAS Cache Table.

diskId: Disk ID of the cache entry (string).

fileId: File ID of the cache entry (string).

fileVersion: File Version of the cache entry (string).

	cacheTime: Time the file entered in the cache

	(= ngas_files.ingestion_time) (float).

	delete: Flag indicating if the entry is scheduled for

	deletion (boolean).

Returns: Reference to object itself.

	
insertSubscriberEntry(sub_obj)

	Inserts the new subscription object into the NGAS subscription table.
If an object with the same subscription ID exists, its contents are
returned; otherwise the given object is returned.

	
markHostSuspended(hostId)

	Mark a host as being suspended in the NGAS DB.

	hostId: Name of host to mark as suspended. If not given the

	local host name is used (string).

Returns: Reference to object itself.

	
mirReqInQueue(fileId, fileVersion, instanceId)

	Probe if the a Mirroring Request with the given ID is in the
associated Mirroring Queue.

fileId: File ID (string).

fileVersion: File Version (integer).

	instanceId: Identification of the NGAS instance taking care of

	coordinating the mirroring (string).

Returns: Indication if the request is in the queue (boolean).

	
query2(sqlQuery, args=())

	Takes an SQL query and a tuple of arguments to bind to the query

	
read(containerId)

	Reads a single ngamsContainer object from the database

	Parameters:

	containerId (str) – the id of the container to read

	Returns:

	the container object

	Return type:

	ngamsContainer.ngamsContainer

	
readHierarchy(containerId, includeFiles=False)

	Reads an ngamsContainer object from the database
and recursively populates it with its children containers.

	Parameters:

	containerId (str) – the id of the container whose hierarchy is to be read

	Returns:

	The container object recursively populated

	Return type:

	ngamsContainer.ngamsContainer

	
relGlobalDbSem()

	Release acquired access to a critical, global DB interaction.

Returns: Reference to object itself.

	
removeFileFromContainer(fileId, containerId)

	Removes the file pointed by fileId from the container
pointed by containerId. If the file doesn’t exist an
error will be raised. If the file is currently not associated
with the indicated container and error will be raised also.

This method returns the uncompressed size of the file just
removed from the container. This can then be used to update the total
size of the container

	Parameters:

	
	fileId (str) – the id to remove from the container

	containerId (str) – the container from which the file needs to be removed

	Returns:

	the uncompressed size of the file just removed from the container

	Return type:

	integer

	
remove_file(file_size, disk_id)

	Update the disk information to reflect that a file has been removed
from the disk

	Parameters:

	
	file_size (int) – the size of the file on disk

	disk_id (str) – the ID of the disk

	
replace_file(old_file_size, old_disk_id, new_file_size, new_disk_id)

	Update the disk information to reflect a file, potentially of a
different size, is being replaced, potentially in a different disk

	Parameters:

	
	old_file_size (int) – the size of the old copy of the file on disk

	old_disk_id (str) – the ID of the disk with the old copy of the file

	new_file_size (int) – the size of the new copy of the file on disk,
could be the same as old_file_size.

	new_disk_id (str) – the ID of the disk with the old copy of the file,
could be the same as new_disk_id.

	
reqWakeUpCall(localHostId, wakeUpHostId, wakeUpTime)

	Request a Wake-Up Call via the DB.

	wakeUpHostId: Name of host where the NG/AMS Server requested for

	the Wake-Up Call is running (string).

	wakeUpTime: Absolute time for being woken up (seconds since

	epoch) (integer).

Returns: Reference to object itself.

	
resetDbTime()

	Reset the Db timer.

Returns: Reference to object itself.

	
resetWakeUpCall(hostId, resetSrvSusp=0)

	Cancel/reset the Wake-Up Call parameters.

	hostId: If specified, another host ID than the one where

	this NG/AMS Server is running can be indicated (string).

Returns: Reference to object itself.

	
setContainerSize(containerId, containerSize)

	Updates the size of the indicated container

	
setDbTmpDir(tmpDir)

	Set the DB temporary directory.

tmpDir: Temporary directory (string).

Returns: Reference to object itself.

	
setFileChecksum(hostId, fileId, fileVersion, diskId, checksum, checksumPlugIn)

	Set the checksum value in the ngas_files table.

hostId: ID of this NGAS host

fileId: ID of file (string).

fileVersion: Version of file (integer).

diskId: ID of disk where file is stored (string).

checksum: Checksum of file (string).

	checksumPlugIn: Name of plug-in used to generate the

	checksum (string).

Returns: Reference to object itself.

	
setLastCheckDisk(diskId, timeSecs)

	Update the Last Check Flag for a disk.

diskId: ID of disk for which to update record (string).

timeSecs: Time in seconds to set for the disk (integer).

Returns: Reference to object itself.

	
setLogicalNameForDiskId(diskId, logicalName)

	Change the Logical Name of the disk with the given Disk ID.

diskId: Disk ID (string).

logicalName: New Logical Name (string).

Returns: Void.

	
subscrBackLogEntryInDb(hostId, portNo, subscrId, fileId, fileVersion)

	Check if there is an entry in the Subscription Back-Log for that
file/Subscriber.

	hostId: Host ID for NGAS host where Data Provider concerned

	is running (string).

portNo: Port number used by Data Provider concerned (integer).

subscrId: Subscriber ID (string).

fileId: File ID (string).

fileVersion: File Version (string).

Returns: 1 = file found, 0 = file no found (integer).

	
subscriberInDb(subscrId)

	Check if the Subscriber with the given ID is registered in the DB.

subscrId: Subscriber ID (string).

	Returns: 1 = Subscriber registered, 0 = Subscriber not

	registered (integer).

	
takeGlobalDbSem()

	Acquire access to a critical, global DB interaction.

Returns: Reference to object itself.

	
transaction()

	Creates a new transaction object and return it

	
triggerEvents(eventInfo=None)

	Set the Event Objects to inform other threads about DB changes.

	eventInfo: Piece of information to be transferred from one

	thread to another (free format).

Returns: Reference to object itself.

	
unpackMirReqSqlResult(sqlResult)

	Unpack a SQL result for one row in the DB Mirroring Table.
The columns in the result must be ordered according to the sequence
given by ngamsDbCore.getNgasMirQueueCols().

	sqlResult: List with elements resulting from the query for one

	row (list).

Returns: Mirroring Request Object (ngamsMirroringRequest).

	
updateCacheEntry(diskId, fileId, fileVersion, delete)

	Update the online status of this cached data object.

diskId: Disk ID for the cached data object (string).

fileId: File ID for the cached data object (string).

fileVersion: Version of the cached data object (integer).

delete: Entry scheduled for deletion (integer/0|1).

Returns: Reference to object itself.

	
updateDataCheckStat(hostId, start, remain, estimTime, rate, checkMb, checkedMb, checkFiles, checkedFiles)

	Update the statistics for the Data Checking Thread.

hostId: ID of NGAS Host to update statistics for (string).

start: Start of checking in seconds since epoch (integer).

remain: Estimated remaining time in seconds (integer).

	estimTime: Estimated total time in seconds to complete the check

	cycle (integer)

rate: Rate of checking in MB/s (float).

checkMb: Amount of data to check in MB (float).

checkedMb: Amount checked in MB (float).

checkFiles: Number of files to check (integer).

checkedFiles: Number of files checked (integer).

Returns: Reference to object itself.

	
updateDbTime(dbAccessTime)

	Update the DB access timer.

dbAccessTime: DB access time to add in seconds (float).

Returns: Reference to object itself.

	
updateDiskFileStatus(diskId, fileSize)

	Update the NGAS Disks Table according to a new file archived.

diskId: Disk ID (string).

fileSize: Size of file as stored on disk (integer).

Returns: Reference to object itself.

	
updateDiskInfo(fileSize, diskId)

	Update the row for the volume diskId hosting the new file of size
fileSize.

	
updateMirReq(mirReqObj)

	Update the referenced Mirroring Request in the DB. The request is
defined by a the set of File ID and File Version.

	mirReqObj: Instance of the Mirroring Request Object containing the

	information about the Mirroring Request
(ngamsMirroringRequest).

Returns: Reference to object itself.

	
updateSrvHostInfo(hostId, srvInfo)

	Update the information in the DB, which is managed by the server
itself. All columns starting with srv_ in the ngas_hosts tables
are defined. The values can be taken from an instance of the
ngamsHostInfo class.

	srvInfo: List containing all information about the host. These are

	all fields starting with srv_ from srv_version to
srv_state (list).

	ignoreErr: If set to 1, a possible exception thrown will be

	caught, and this error ignored. Otherwise the
method will throw an exception itself (integer/0|1).

Returns: Void.

	
updateStatusMirReq(fileId, fileVersion, newStatus)

	Update the status of the Mirroring Request.

fileId: File ID (string).

fileVersion: File Version (integer).

	newStatus: New status for the Mirroring Request to write to the DB

	(ngamsMirroringRequest.NGAMS_MIR_REQ_STAT_SCHED, …)

Returns: Reference to object itself.

	
updateSubscrQueueEntry(subscrId, fileId, fileVersion, diskId, status, status_date, comment=None)

	Update the status (and comment) of a file in the persistent queue
given its primary key

	
updateSubscrQueueEntryStatus(subscrId, oldStatus, newStatus)

	change the status from old to new for files belonging to a subscriber

	
updateSubscrStatus(subscrId, fileIngDate)

	Update the Subscriber Status so that it reflects the File Ingestion
Date of the last file ingested.

subscrId: Subscriber ID (string).

fileIngDate: File Ingestion Date (string/ISO 8601).

Returns: Void.

	
updateSubscriberEntry(sub_obj)

	The method writes the information in connection with a Subscriber
in the NGAS DB. If an entry already exists for that disk, it is updated
with the information given as input parameters. Otherwise, a new
entry is created.

hostId:
…
filterPlugInPars: Parameters for the Subscriber (string).

priority: Priority of Subscriber (integer).

	startDate: Date the subscription should start from

	(string/ISO 8601).

	lastFileIngDate: Ingestion dtae of last file delivered

	(string/ISO 8601).

	Returns: Returns 1 if a new entry was created in the DB

	and 0 if an existing entry was updated
(integer/0|1).

	
writeCfgPar(groupId, parName, value, comment)

	Write a configuration parameter to the NGAS DB. If the parameter
is already defined, the value/comment are updated.

groupId: Configuration Group ID (string).

parName: Name of parameter (string).

value: Value of parameter (string).

comment: Comment for parameter (string).

Returns: Reference to object itself.

	
writeDiskEntry(diskId, archive, installationDate, type, manufacturer, logicalName, hostId, slotId, mounted, mountPoint, numberOfFiles, availableMb, bytesStored, completed, completionDate, checksum, totalDiskWriteTime, lastCheck, lastHostId)

	The method writes the information in connection with a disk in the
NGAS DB. If an entry already exists for that disk, it is updated
with the information contained in the Disk Info Object. Otherwise,
a new entry is created.

	Returns:

	1 if a new entry was created in the DB, 0 if an existing entry
was updated.

	
writeFileEntry(hostId, diskId, filename, fileId, fileVersion, format, fileSize, uncompressedFileSize, compression, ingestionDate, ignore, checksum, checksumPlugIn, fileStatus, creationDate, iotime, ingestionRate, genSnapshot=1, updateDiskInfo=0, prev_disk_id=None)

	The method writes the information in connection with a file in the
NGAS DB. If an entry already exists for that file, it is updated
with the information contained in the File Info Object. Otherwise,
a new entry is created.

diskId Values for the columns in the ngas_disks
… table (use values returned from ngamsFileInfo).

genSnapshot: Generate a snapshot file (integer/0|1).

	updateDiskInfo: Update automatically the disk info for the

	disk hosting this file (integer/0|1).

Returns: Void.

	
writeHostInfo(hostInfoObj)

	Create an entry in the NGAS Hosts Table

	hostInfoObj: ngamsHostInfo object containing the information for the

	new entry (ngamsHostInfo).

Returns: Reference to object itself.

	
writeMirReq(mirReqObj, check=True)

	Write the referenced Mirroring Request in the DB. The request is
defined by a the set of File ID and File Version.

	mirReqObj: Instance of the Mirroring Request Object containing the

	information about the Mirroring Request
(ngamsMirroringRequest).

	check: Check if the entry is already in the queue. In case yes,

	just update it (boolean).

Returns: Reference to object itself.

 Configuration

Configuration

	
class ngamsLib.ngamsConfig.ngamsConfig(filename='', dbObj=None)

	Class to handle the information in the NG/AMS Configuration.

	
addAuthUser(user, password)

	Add a user in the object.

user: User name (string).

password: Encrypted password (string).

Returns: Reference to object itself.

	
addAuthUserCommands(user, commands)

	Add a user in the object.

user: User name (string).

	commands: comma separated commands (string). e.g. RETRIEVE,STATUS,QARCHIVE

	a “*” means all commands

Returns: Reference to object itself.

	
addMimeTypeMap(mimeType, extension)

	Add a mime-type map to the object.

mimeType: Mime-type (string).

extension: Extension corresponding to mime-type (string).

Returns: Reference to object itself.

	
addMirroringSrcObj(mirSrcObj)

	Add a new Mirroring Source Object in the internal list.

mirSrcObj: Mirroring Source Object (ngamsMirroringSource).

Returns: Reference to object itself.

	
addStorageSetObj(storageSetObj)

	Add a Storage Set object to the configuration.

storageSetObj: Instance of Storage Set class (ngamsStorageSet).

Returns: Reference to object itself.

	
addStreamObj(streamObj)

	Add an ngamsStream object.

streamObj: Stream object (ngamsStream).

Returns: Reference to object itself.

	
clear()

	Clear the object.

Returns: Reference to object itself.

	
dumpXmlDic()

	Dump the contents of the XML Dictionary in a buffer in the format:

<Key> = <Value>
<Key> = <Value>
…

	Returns: Reference to string buffer with the XML Dictionary dump

	(string).

	
genXml(hideCritInfo=1)

	Generate an XML DOM Node object from the contents of the
ngamsConfig object.

Returns: XML DOM Node (Node).

	
genXmlDoc(hideCritInfo=1)

	Generate an XML Document from the contents loaded in a string buffer
and return this.

hideCritInfo: Hide critical information (integer/0|1).

Returns: XML document (string).

	
getAlertNotifList()

	Get reference to tuple with recipients of
Alert Notification Events.

Returns: Tuple with recipients (tuple).

	
getAllowArchiveReq()

	Get the Allow Archive Request Flag.

Returns: Allow Archive Request Flag (integer).

	
getAllowProcessingReq()

	Get the Allow Processing Request Flag.

Returns: Allow Processing Request Flag (integer).

	
getAllowRemoveReq()

	Get the Allow Remove Request Flag.

Returns: Allow Remove Request Flag (integer).

	
getAllowRetrieveReq()

	Get the Allow Retrieve Request Flag.

Returns: Allow Retrieve Request Flag (integer).

	
getArchiveName()

	Get name of the archive.

Returns: Name of archive (string).

	
getArchiveRotatedLogfiles()

	Whether rotated logfiles are automatically archived locally or not

	
getArchiveUnits()

	Get Archive Units.

Returns: Archive Units (string).

	
getAssocSlotId(slotId)

	Get the Slot ID of the disk associated to the disk with the
given Slot ID.

slotId: Slot ID (string).

Returns: Slot ID of associated disk - “” if not found (string).

	
getAuthExcludeCommandList()

	Return the list of commands excluded from authorization

	Returns: comma separated commands (string).

	e.g. ARCHIVE,CHECKFILE,RETRIEVE,STATUS
A “*” is a wildcard for all commands

	
getAuthHttpHdrVal(user)

	Generate the value to be sent with the HTTP Autorization Header.
If no specific user is given, an arbitrary user is chosen.

user: Name of registered user (string|None).

Returns: Authorization HTTP Header value (string).

	
getAuthUserCommands(user)

	Returns the info (password) for a user.

user: User name (string).

Returns: Password or None (string).

	
getAuthUserInfo(user)

	Returns the info (password) for a user.

user: User name (string).

Returns: Password or None (string).

	
getAuthorize()

	Return the authorization flag.

Returns: 1 = authorization on (integer/0|1).

	
getAutoUnsubscribe()

	Return the Auto-Unsubscribe Flag.

Returns: Auto Un-Subscribe Flag (integer/0|1).

	
getBackLogBufferDirectory()

	Get the Back Log Buffer Directory.

Returns: Back Log Buffer Directory (string).

	
getBackLogBuffering()

	Get the enable/disable Back Log Buffering Flag.

Returns: Back Log Buffering on/off (0/1) (integer).

	
getBackLogDir()

	Return the exact (complete) name of the Back-Log Buffer Directory.

Returns: Name of Back-Log Buffer Directory (string).

	
getBackLogExpTime()

	Return the expiration time for directories and files in the
Subscription Back-Log Area.

Returns: Expiration time (string/ISO 8601).

	
getBlockSize()

	Get HTTP data read/write block size.

Returns: HTTP data read/write block size (integer).

	
getCRCVariant()

	Defines the CRC Variant to use.

	Returns:

	
	-1: Don’t perform any CRC calculation at all

	0: crc32 (using python’s binascii implementation w/o masking)

	1: crc32c (using Intel’s SSE 4.2 implementation via the crc32c module)

	2: crc32z (using python’s binascii implementation w/ masking)

	
getCachingEnabled()

	Whether the server is configured to operate in caching mode (default: False)

	
getCachingPeriod()

	Return the period for checking the cache holding.

Returns: Value of caching period (integer).

	
getCfg()

	Get the name of the configuration file loaded into the object.

Returns: Name of configuration file (string).

	
getDataCheckActive()

	Return the Data Check Service enable/disable flag.

Returns: Data Check Service enabled/disabled (integer).

	
getDataCheckForceNotif()

	Return the Force Data Check Notification Flag.

Returns: Force notification = 1 (integer/0|1).

	
getDataCheckMaxProcs()

	Return the maximum number of parallel Data Check sub-processes.

Returns: Maximum number of sub-processes (integer).

	
getDataCheckMinCycle()

	Return the Data Check Service Minimum Cycle Time.

Returns: Data Check Minimum Cycle Time (string).

	
getDataCheckNotifList()

	Get reference to tuple with recipients of Data Check Notification
Messages.

Returns: Tuple with recipients (tuple).

	
getDataCheckScan()

	Return the Data Check Scan Flag.

Returns: Data Check Scan Flag (integer/0|1).

	
getDataMoverHostIds()

	

	
getDataMoverSuspenstionTime()

	Return the Data Mover (Subscription) Thread Suspension Time.

Returns: Suspension time (string/ISO 8601).

	
getDbInterface()

	Get the name of the NG/AMS DB Interface Plug-In in use.

Returns: DB Interface Plug-In (string).

	
getDbMaxPoolCons()

	Max number of DB Pool Connections.

NOTICE: 7 connections was chosen as a default to allow for all the NGAS
background services to have a long running db connection while allowing
user requests to be serviced. Anything less than 7 with all the services
enabled might cause user requests to block waiting for a db connection
to be placed back in the pool from a long running service.

Returns: Max number of DB Pool Connections.

	
getDbParameters()

	Return DB connection parameters.

Returns: DB connection parameters (string).

	
getDbSessionSql()

	SQL commands to run whenever a connection is established

	
getDbSnapshot()

	Return the DB Snapshot Feature on/off.

Returns: DB Snapshot Feature state (integer/0|1).

	
getDbUseFileIgnore()

	Indicates whether to use “file_ignore” as the column name on the
“ngas_files” table as opposed to “ignore”. For historical reasons
the same column has been referenced using two different names.

	
getDiskChangeNotifList()

	Get reference to tuple with recipients of
Disk Change Notification Events.

Returns: Tuple with recipients (tuple).

	
getDiskSpaceNotifList()

	Get reference to tuple with recipients of
Disk Space Notification Events.

Returns: Tuple with recipients (tuple).

	
getDiskSyncPlugIn()

	Get name of the Disk Sync Plug-In.

Returns: Name of Disk Sync Plug-In (string).

	
getErrorNotifList()

	Get reference to tuple with recipients of
Error Notification Events.

Returns: Tuple with recipients (tuple).

	
getExtFromMimeType(mimeType)

	Get the file extension corresponding to the given mime-type.

mimeType: Mime-type (string).

Returns: Extension corresponding to mime-type (string).

	
getFileStagingEnable()

	Return if the file staging flag is set to Enabled / Disable

Returns: 1 = enabled, 0 = disabled (integer/0|1)

	
getFileStagingPlugIn()

	Return the name of the FileStagingPlugIn,
which takes file online if it is offline.

The plugin must contain these two functions:

	def isFileOffline(filename)

	PAR: filename: string
RETURN: 1 - yes, 0 - no, Exception - error

	def stageFiles(filenameList)

	PAR: filenameList: List of file names (string)
RETURN: the number of files staged. Exception, if any errors

	
getFreeSpaceDiskChangeMb()

	Get the limit for the minimum free disk space before
changing disk.

Returns: MB limit for changing disk (integer).

	
getIdleSuspension()

	Return the NGAS Idle Suspension Flag.

Returns: Idle Suspension Flag (integer/0|1).

	
getIdleSuspensionTime()

	Return the Idle Suspension Time.

Returns: Idle Suspension Time in seconds (integer).

	
getIpAddress()

	Get socket port number.

Returns: Reference to object itself.

	
getJanitorPlugins()

	Get the list of Janitor Plug-in names.

Returns: Janitor Service Suspension Time (string).

	
getJanitorSuspensionTime()

	Get Janitor Service Suspension Time.

Returns: Janitor Service Suspension Time (string).

	
getLabelPrinterPlugIn()

	Get name of Label Printer Plug-In.

Returns: Name of Printer Plug-In (string).

	
getLabelPrinterPlugInPars()

	Get input parameters for Label Printer Plug-In.

Returns: Input parameters for Label Printer Plug-In (string).

	
getLocalLogFile()

	Return the Local Log File.

Returns: Name of Local Log File (string).

	
getLocalLogLevel()

	Return the Local Log Level.

Returns: Local Log Level (integer).

	
getLogRotateCache()

	Return the size of the internal log rotation cache.

Returns: Size of internal log buffer (integer).

	
getLogRotateInt()

	Return the Log Rotation Interval given as an ISO 8601 timestamp.

Returns: Log Rotation Interval as ISO 8601 format (string).

	
getMaxRetentionSize()

	Get the Maximum Retention Size, which is the maximum number of
Email Notification Messages, which is kept before sending these out.

Returns: Maximum retention buffer size (integer).

	
getMaxRetentionTime()

	Return the Maximum Retention Time, which is the maximum time an
Email Notification Message should be retained before it is send out.

Returns: Maximum Retention Time as ISO 8601 format (string).

	
getMaxSimReqs()

	Get the maximum number of simultaneous requests.

Returns: Maximum number of simultaneous requests (integer).

	
getMimeTypeMappings()

	Return list containing sub-lists, one for each mime-type/extension
mapping. The format is: [[mime-type, ext], [mime-type, ext], …].

Returns: List with mime-type mappings ([[mt, ext], [mt, ext], …]).

	
getMinFreeSpaceWarningMb()

	Get the limit for the minimum free space available, before
a warning is issued to change the disk.

Returns: Minimum free space before issuing warning (integer).

	
getMinSpaceSysDirMb()

	Get the minimum amount of free disk space required on the NG/AMS System
Directories.

Returns: Minimum space (integer).

	
getMirroringActive()

	Return the flag indicating if the Mirroring Service is activated.

Returns: Value of mirroring activated flag (integer).

	
getMirroringErrorRetryPeriod()

	Return the period for retrying to mirroring failing requests.

Returns: Error retry timeout (integer).

	
getMirroringErrorRetryTimeOut()

	Return the timeout for retrying to mirror a failing request.

Returns: Error retry timeout (integer).

	
getMirroringReportRecipients()

	Return the report recipients list.

Returns: The list of report recipients.

	
getMirroringSrcList()

	Get reference to list with Mirroring Source Objects.

	Returns: List with Mirroring Source Objects

	([ngamsMirroringSource, …]).

	
getMirroringSrcObj(id)

	Find the Mirroring Source Object with the given ID.

id: ID associated to the Mirroring Source Object (string).

	Returns: Reference to Mirroring Source Object in question

	(ngamsMirroringSource).

	
getMirroringSrcObjFromSrvList(srvList)

	Return the Mirroring Source Object associated to the given
Server List.

srvList: Server list, common separated list of

‘<Node>:<Port,…’ (string).

	Returns: Reference to Mirroring Source Object associated to the

	given server list (ngamsMirroringSource).

	
getMirroringThreads()

	Return the number of mirroring threads to use.

Returns: Number of mirroring threads (integer).

	
getNGASJobMANHost()

	

	
getNoDiskSpaceNotifList()

	Get reference to tuple with recipients of
No Free Disks Notification Events.

Returns: Tuple with recipients (tuple).

	
getNotifActive()

	Return the Email Notification Active Flag.

Returns: Notification Active Flag (integer)

	
getNotifSmtpHost()

	Return the SMTP Host for sending Notification e-mails.

Returns: SMTP Host (string).

	
getNotifSmtpPort()

	Return the SMTP port for sending Notification e-mails.

Returns: SMTP Port (int).

	
getOfflinePlugIn()

	Get name of Offline Plug-In.

Returns: Name of Offline Plug-In (string).

	
getOfflinePlugInPars()

	Get input parameters for Offline Plug-In.

Returns: Input parameters for Offline Plug-In (string).

	
getOnlinePlugIn()

	Get name of Online Plug-In.

Returns: Name of Online Plug-In (string).

	
getOnlinePlugInPars()

	Get input parameters for Online Plug-In.

Returns: Input parameters for Online Plug-In (string).

	
getPathPrefix()

	Return Path Prefix.

Returns: Path Prefix (string).

	
getPluginsPath()

	Get the directory where plug-ins are placed.

	
getPortNo()

	Get socket port number.

Returns: Reference to object itself.

	
getProcessingDirectory()

	Get NG/AMS Processing Directory.

Returns: Processing directory (string).

	
getProxyCRC()

	If the proxy archive server
check CRC as well

By default, 0 (do not check CRC)

	
getProxyMode()

	Get Proxy Mode Flag.

Returns: Proxy Mode Flag (integer).

	
getReplication()

	Return File Replication on/off flag.

Returns: File Replication on/off flag (integer).

	
getRequestDbBackend()

	Returns whether the server should keep a request database or not.

	
getRootDirectory()

	Get NGAS Root Directory.

NOTE: THE NGAMS_PREFIX environment variable overrides the one in the
Config-file.

Returns: NGAS Root Directory (string).

	
getSender()

	Return the senders email address. This is important in cases where
the smtp server is setup to allow emails only from known domains
and the NGAS server sits on a private network.

Returns: email address for the ‘from’ field (string).

	
getSlotIdDefined(slotId)

	Returns 1 if the Slot ID indicated is used in one of the
Storage Sets defined, otherwise 0 is returned.

slotId: Slot ID (string).

Returns: 1 if Slot ID is defined, otherwise 0 (integer/0|1).

	
getSlotIds()

	Return tuple with Slot IDs. The format is:

[<Main Slot ID 1>,[<Rep. Slot ID 1>,] <Main Slot ID 2>, …]

Returns: Tuple with Slot IDs (tuple).

	
getStorageSetFromId(storageSetId)

	Return a Storage Set object from a given Storage Set ID.

storageSetId: Storage Set ID (string).

	Returns: Instance of ngamsStorageSet or

	None (ngamsStorageSet | None).

	
getStorageSetFromSlotId(slotId)

	Get a Storage Set object from a given Slot ID.

slotId: Slot ID (string).

	Returns: Instance of ngamsStorageSet or

	None (ngamsStorageSet | None).

	
getStorageSetList()

	Get reference to list with Storage Set objects.

Returns: List with storage set objects ([ngamsStorageSet, …]).

	
getStreamFromMimeType(mimeType)

	Get an ngamsStream object from its mime-type.

mimeType: Mime-type for Stream (string).

Returns: Stream object or None (ngamsStream|None).

	
getStreamList()

	Get list containing the Stream objects

Returns: List containing Stream objects ([ngamsStream, …]).

	
getSubscrEnable()

	Return the Susbcription Enable/Disable Flag to switch on/off the
subscription for data from data providers.

Returns: 1 = enabled, 0 = disabled (integer/0|1).

	
getSubscrSuspTime()

	Return the Subscription Thread Suspension Time.

Returns: Suspension time (string/ISO 8601).

	
getSubscriptionsDic()

	Get reference to list with Subscriptions Objects.

Returns: Subscriber List (list/ngamsSubscriber).

	
getSuspensionPlugIn()

	Return the name of the Suspension Plug-In.

Returns: Name of plug-in (string).

	
getSuspensionPlugInPars()

	Return the Suspension Plug-In parameters.

Returns: Plug-in parameters (string).

	
getSysLog()

	Return the syslog on/off flag.

Returns: Syslog on/off flag (integer).

	
getSysLogAddress()

	Return the address where syslog is listening for incoming messages.
If no address is given, a platform-dependent default is used

Returns: Syslog address (string).

	
getSysLogPrefix()

	Return the syslog prefix.

Returns: Syslog prefix (string).

	
getTimeOut()

	Gets the timeout that applies to HTTP requests.

	
getVal(parName)

	Return the value of a parameter.

	parName: Name of the parameter in the ‘Simplified XPath Syntax’,

	e.g.:

NgamsCfg.Server[1].ArchiveName (string).

Returns: Value of parameter or None (<Value>|None).

	
getVolumeDirectory()

	Return value of the Volume Directory attribute in the Server Element.

Returns: Value of VolumeDirectory (string).

	
getWakeUpCallTimeOut()

	Return the Wake-Up Call Time-Out for waiting for an NGAS host
being woken up to be up and running.

Returns: Time-out in seconds (integer).

	
getWakeUpPlugIn()

	Return the name of the Wake-Up Plug-In.

Returns: Name of plug-in (string).

	
getWakeUpPlugInPars()

	Return the parameters to the Wake-Up Plug-In.

Returns: Plug-in parameters (string).

	
getWakeUpServerHost()

	Return the Wake-Up Server host name.

Returns: Name of Wake-up Server Host (string).

	
hasAuthUser(user)

	Check if a user with the given ID is defined.

user: User name (string).

Returns: 1 = user defined (integer/0|1).

	
load(filename, check=0)

	Load an NG/AMS Configuration File into the object.

filename: Name of configuration file (string).

	check: If set to 1 the semantics is checked after loading

	(integer/0|1).

Returns: Reference to object itself.

	
loadFromDb(name, dbObj=None)

	Load a configuration from the DB via the given ID.

name: Name of the configuration in the DB (string).

dbObj: DB connection object (ngamsDb).

Returns: Reference to object itself.

	
save(targetFilename, hideCritInfo=1)

	Save the configuration in the object into a XML document
with the given name.

targetFilename: Name of target file (string).

	hideCritInfo: If set to 1 passwords and other ‘confidential’

	information appearing in the log file, will
be hidden (integer/0|1).

Returns: Reference to object itself.

	
setDbObj(dbObj)

	Set the DB connection object of this instance.

dbObj: DB connection object (ngamsDb).

Returns: Reference to object itself.

	
setDiskChangeNotifList(subscriberList)

	Set the list of Disk Change Notification Subscribers.

	subscriberList: List of subscribers of the Disk Change

	Notification (list).

Returns: Reference to object itself.

	
setDiskSpaceNotifList(subscriberList)

	Set the list of Disk Space Notification Subscribers.

	subscriberList: List of subscribers of the Disk Change

	Notification (list).

Returns: Reference to object itself.

	
storeVal(parName, value, dbCfgGroupId=None)

	Set the value of the given parameter.

parName: Name of parameter e.g.:

NgamsCfg.Server[1].RootDirectory (string).

value: Value of the parameter (string).

dbCfgGroupId: DB configuration group ID (string|None).

Returns: Reference to object itself.

	
writeToDb(dbObj=None)

	Write the configuration loaded into the DB.

dbObj: DB connection object (ngamsDb).

Returns: Reference to object itself.

 Server classes

Server classes

	
class ngamsServer.ngamsServer.ngamsHttpRequestHandler(request, client_address, server)

	Class used to handle an HTTP request. The various send_* methods
should make it easy for the rest of the code to send different kind of
replies to users

	
proxy_request(host_id, host, port, timeout=300)

	Proxy the current request to host:port

	
redirect(host, port)

	Redirects the client to the requested path, but on host:port

	
send_data(data, mime_type, code=200, message=None, fname=None, hdrs={})

	Sends back data, which is of type mime_type. If fname is given
then the data is sent as an attachment.

	
send_file(f, mime_type, start_byte=0, fname=None, hdrs={})

	Sends file f of type mime_type to the client. Optionally a different
starting byte to start the transmission from, and a different name for
the file to present the data to the user can be given.

	
send_file_headers(fname, mime_type, size, start_byte=0, hdrs={})

	Sends the headers advertising file fname, but without its data.
Headers set by this method take precedence over values given by the
caller via the hdrs optional argument

	
send_ingest_status(msg, disk_info)

	Reply to the client with a standard ingest status XML document

	
send_response(code, message=None, hdrs={})

	Sends the initial status line plus headers to the client, can’t be called twice

	
send_status(message, status='SUCCESS', code=None, http_message=None, hdrs={})

	Creates and sends an NGAS status XML document back to the client

	
class ngamsServer.ngamsServer.ngamsServer(cfg_fname, _cert=None)

	Class providing the functionality of the NG/AMS Server.

	
cfg = None

	The underlying configuration object of type
ngamsConfig

	
db = None

	A reference to the underlying database of type
ngamsDb

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	addAuthUser() (ngamsLib.ngamsConfig.ngamsConfig method)

 	addAuthUserCommands() (ngamsLib.ngamsConfig.ngamsConfig method)

 	addDbChangeEvt() (ngamsLib.ngamsDb.ngamsDb method)

 	addDiskHistEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	addFileToContainer() (ngamsLib.ngamsDb.ngamsDb method)

 	addMimeTypeMap() (ngamsLib.ngamsConfig.ngamsConfig method)

 	
 	addMirroringSrcObj() (ngamsLib.ngamsConfig.ngamsConfig method)

 	addSrvList() (ngamsLib.ngamsDb.ngamsDb method)

 	addStorageSetObj() (ngamsLib.ngamsConfig.ngamsConfig method)

 	addStreamObj() (ngamsLib.ngamsConfig.ngamsConfig method)

 	addSubscrBackLogEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	addToContainerSize() (ngamsLib.ngamsDb.ngamsDb method)

 	asTimestamp() (ngamsLib.ngamsDb.ngamsDb method)

B

 	
 	buildFileSummary1Query() (ngamsLib.ngamsDb.ngamsDb method)

C

 	
 	cfg (ngamsServer.ngamsServer.ngamsServer attribute)

 	clear() (ngamsLib.ngamsConfig.ngamsConfig method)

 	close() (ngamsLib.ngamsDb.ngamsDb method)

 	(ngamsLib.ngamsDbCore.cursor2 method)

 	(ngamsLib.ngamsDbCore.ngamsDbCore method)

 	closeContainer() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	containerExists() (ngamsLib.ngamsDb.ngamsDb method)

 	convertTimeStamp() (ngamsLib.ngamsDb.ngamsDb method)

 	createContainer() (ngamsLib.ngamsDb.ngamsDb method)

 	createDbFileChangeStatusDoc() (ngamsLib.ngamsDb.ngamsDb method)

 	createDbRemFileChangeStatusDoc() (ngamsLib.ngamsDb.ngamsDb method)

 	cursor2 (class in ngamsLib.ngamsDbCore)

D

 	
 	db (ngamsServer.ngamsServer.ngamsServer attribute)

 	dbCursor() (ngamsLib.ngamsDb.ngamsDb method)

 	(ngamsLib.ngamsDbCore.ngamsDbCore method)

 	deleteCacheEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	deleteDiskInfo() (ngamsLib.ngamsDb.ngamsDb method)

 	deleteFileInfo() (ngamsLib.ngamsDb.ngamsDb method)

 	deleteSubscriber() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	delSubscrBackLogEntries() (ngamsLib.ngamsDb.ngamsDb method)

 	delSubscrBackLogEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	destroySingleContainer() (ngamsLib.ngamsDb.ngamsDb method)

 	diskInDb() (ngamsLib.ngamsDb.ngamsDb method)

 	dumpFileInfoCluster() (ngamsLib.ngamsDb.ngamsDb method)

 	dumpMirroringQueue() (ngamsLib.ngamsDb.ngamsDb method)

 	dumpXmlDic() (ngamsLib.ngamsConfig.ngamsConfig method)

E

 	
 	execute() (ngamsLib.ngamsDbCore.transaction method)

F

 	
 	fetch() (ngamsLib.ngamsDbCore.cursor2 method)

 	fileInDb() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	files_in_host() (ngamsLib.ngamsDb.ngamsDb method)

 	from_config() (in module ngamsLib.ngamsDb)

 	fromTimestamp() (ngamsLib.ngamsDb.ngamsDb method)

G

 	
 	genXml() (ngamsLib.ngamsConfig.ngamsConfig method)

 	genXmlDoc() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAlertNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAllowArchiveReq() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAllowProcessingReq() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAllowRemoveReq() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAllowRetrieveReq() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getArchiveName() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getArchiveRotatedLogfiles() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getArchiveUnits() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAssocSlotId() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAuthExcludeCommandList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAuthHttpHdrVal() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAuthorize() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAuthUserCommands() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAuthUserInfo() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAutoUnsubscribe() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getAvailableVolumes() (ngamsLib.ngamsDb.ngamsDb method)

 	getBackLogBufferDirectory() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getBackLogBuffering() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getBackLogDir() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getBackLogExpTime() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getBestTargetDisk() (ngamsLib.ngamsDb.ngamsDb method)

 	getBlockSize() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getCacheContents() (ngamsLib.ngamsDb.ngamsDb method)

 	getCachingEnabled() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getCachingPeriod() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getCfg() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getCfgPars() (ngamsLib.ngamsDb.ngamsDb method)

 	getClusterNameFromHostId() (ngamsLib.ngamsDb.ngamsDb method)

 	getClusterReadyArchivingUnits() (ngamsLib.ngamsDb.ngamsDb method)

 	getContainerIdForUniqueName() (ngamsLib.ngamsDb.ngamsDb method)

 	getContainerName() (ngamsLib.ngamsDb.ngamsDb method)

 	getCRCVariant() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getCreateDbSnapshot() (ngamsLib.ngamsDb.ngamsDb method)

 	getDataCheckActive() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDataCheckForceNotif() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDataCheckMaxProcs() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDataCheckMinCycle() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDataCheckNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDataCheckScan() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDataMoverHostIds() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDataMoverSuspenstionTime() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDbInterface() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDbMaxPoolCons() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDbParameters() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDbSessionSql() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDbSnapshot() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDbTime() (ngamsLib.ngamsDb.ngamsDb method)

 	getDbUseFileIgnore() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDiskChangeNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDiskCompleted() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskIdFromSlotId() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskIds() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskIdsMountedDisks() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskIdsMtPtsMountedDisks() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskInfoForSlotsAndHost() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskInfoFromDiskId() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskInfoFromDiskIdList() (ngamsLib.ngamsDb.ngamsDb method)

 	getDiskSpaceNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getDiskSyncPlugIn() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getErrorNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getExtFromMimeType() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getFileChecksum() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileChecksumValueAndVariant() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileInfoFromDiskIdFilename() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileInfoFromFileId() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileInfoFromFileIdHostId() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileInfoList() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileSize() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileStagingEnable() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getFileStagingPlugIn() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getFileStatus() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileSummary1() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileSummary1SingleFile() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileSummary2() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileSummary3() (ngamsLib.ngamsDb.ngamsDb method)

 	getFileSummarySpuriousFiles1() (ngamsLib.ngamsDb.ngamsDb method)

 	getFreeSpaceDiskChangeMb() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getHostIdsFromClusterName() (ngamsLib.ngamsDb.ngamsDb method)

 	getHostInfoFromHostIds() (ngamsLib.ngamsDb.ngamsDb method)

 	getIdleSuspension() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getIdleSuspensionTime() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getIngDate() (ngamsLib.ngamsDb.ngamsDb method)

 	getIpAddress() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getIpFromHostId() (ngamsLib.ngamsDb.ngamsDb method)

 	getJanitorPlugins() (ngamsLib.ngamsConfig.ngamsConfig method)

 	
 	getJanitorSuspensionTime() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getLabelPrinterPlugIn() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getLabelPrinterPlugInPars() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getLastDiskCheck() (ngamsLib.ngamsDb.ngamsDb method)

 	getLatestFileVersion() (ngamsLib.ngamsDb.ngamsDb method)

 	getLocalLogFile() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getLocalLogLevel() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getLogicalNameFromDiskId() (ngamsLib.ngamsDb.ngamsDb method)

 	getLogicalNamesMountedDisks() (ngamsLib.ngamsDb.ngamsDb method)

 	getLogRotateCache() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getLogRotateInt() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMaxDiskNumber() (ngamsLib.ngamsDb.ngamsDb method)

 	getMaxRetentionSize() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMaxRetentionTime() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMaxSimReqs() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMimeTypeMappings() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMinFreeSpaceWarningMb() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMinLastDiskCheck() (ngamsLib.ngamsDb.ngamsDb method)

 	getMinSpaceSysDirMb() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringActive() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringErrorRetryPeriod() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringErrorRetryTimeOut() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringReportRecipients() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringSrcList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringSrcObj() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringSrcObjFromSrvList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMirroringThreads() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getMtPtFromDiskId() (ngamsLib.ngamsDb.ngamsDb method)

 	getNgasFilesMap() (ngamsLib.ngamsDb.ngamsDb method)

 	getNGASJobMANHost() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getNoDiskSpaceNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getNotifActive() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getNotifSmtpHost() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getNotifSmtpPort() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getNumberOfFiles() (ngamsLib.ngamsDb.ngamsDb method)

 	getOfflinePlugIn() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getOfflinePlugInPars() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getOnlinePlugIn() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getOnlinePlugInPars() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getPathPrefix() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getPluginsPath() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getPortNo() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getPortNoFromHostId() (ngamsLib.ngamsDb.ngamsDb method)

 	getProcessingDirectory() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getProxyCRC() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getProxyMode() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getReplication() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getRequestDbBackend() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getRootDirectory() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSender() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSlotIdDefined() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSlotIdFromDiskId() (ngamsLib.ngamsDb.ngamsDb method)

 	getSlotIds() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSlotIdsMountedDisks() (ngamsLib.ngamsDb.ngamsDb method)

 	getSpaceAvailForHost() (ngamsLib.ngamsDb.ngamsDb method)

 	getSrvDataChecking() (ngamsLib.ngamsDb.ngamsDb method)

 	getSrvListFromId() (ngamsLib.ngamsDb.ngamsDb method)

 	getSrvListIdFromSrvList() (ngamsLib.ngamsDb.ngamsDb method)

 	getSrvSuspended() (ngamsLib.ngamsDb.ngamsDb method)

 	getStorageSetFromId() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getStorageSetFromSlotId() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getStorageSetList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getStreamFromMimeType() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getStreamList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSubscrBackLog() (ngamsLib.ngamsDb.ngamsDb method)

 	getSubscrBackLogBySubscrId() (ngamsLib.ngamsDb.ngamsDb method)

 	getSubscrBackLogCount() (ngamsLib.ngamsDb.ngamsDb method)

 	getSubscrEnable() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSubscriberInfo() (ngamsLib.ngamsDb.ngamsDb method)

 	getSubscriberStatus() (ngamsLib.ngamsDb.ngamsDb method)

 	getSubscriptionsDic() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSubscrQueue() (ngamsLib.ngamsDb.ngamsDb method)

 	getSubscrSuspTime() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSumBytesStored() (ngamsLib.ngamsDb.ngamsDb method)

 	getSuspensionPlugIn() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSuspensionPlugInPars() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSysLog() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSysLogAddress() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getSysLogPrefix() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getTimeOut() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getVal() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getVolumeDirectory() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getWakeUpCallTimeOut() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getWakeUpPlugIn() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getWakeUpPlugInPars() (ngamsLib.ngamsConfig.ngamsConfig method)

 	getWakeUpRequests() (ngamsLib.ngamsDb.ngamsDb method)

 	getWakeUpServerHost() (ngamsLib.ngamsConfig.ngamsConfig method)

H

 	
 	hasAuthUser() (ngamsLib.ngamsConfig.ngamsConfig method)

 	
 	hasCfgPar() (ngamsLib.ngamsDb.ngamsDb method)

I

 	
 	insertCacheEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	insertSubscriberEntry() (ngamsLib.ngamsDb.ngamsDb method)

L

 	
 	load() (ngamsLib.ngamsConfig.ngamsConfig method)

 	
 	loadFromDb() (ngamsLib.ngamsConfig.ngamsConfig method)

M

 	
 	markHostSuspended() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	mirReqInQueue() (ngamsLib.ngamsDb.ngamsDb method)

N

 	
 	ngamsConfig (class in ngamsLib.ngamsConfig)

 	ngamsDb (class in ngamsLib.ngamsDb)

 	ngamsDbCore (class in ngamsLib.ngamsDbCore)

 	
 	ngamsHttpRequestHandler (class in ngamsServer.ngamsServer)

 	ngamsServer (class in ngamsServer.ngamsServer)

 	ngas_subscriber_auth() (built-in function)

P

 	
 	proxy_request() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

Q

 	
 	query2() (ngamsLib.ngamsDb.ngamsDb method)

 	(ngamsLib.ngamsDbCore.ngamsDbCore method)

R

 	
 	read() (ngamsLib.ngamsDb.ngamsDb method)

 	readHierarchy() (ngamsLib.ngamsDb.ngamsDb method)

 	redirect() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

 	relGlobalDbSem() (ngamsLib.ngamsDb.ngamsDb method)

 	remove_file() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	removeFileFromContainer() (ngamsLib.ngamsDb.ngamsDb method)

 	replace_file() (ngamsLib.ngamsDb.ngamsDb method)

 	reqWakeUpCall() (ngamsLib.ngamsDb.ngamsDb method)

 	resetDbTime() (ngamsLib.ngamsDb.ngamsDb method)

 	resetWakeUpCall() (ngamsLib.ngamsDb.ngamsDb method)

S

 	
 	save() (ngamsLib.ngamsConfig.ngamsConfig method)

 	send_data() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

 	send_file() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

 	send_file_headers() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

 	send_ingest_status() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

 	send_response() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

 	send_status() (ngamsServer.ngamsServer.ngamsHttpRequestHandler method)

 	setContainerSize() (ngamsLib.ngamsDb.ngamsDb method)

 	setDbObj() (ngamsLib.ngamsConfig.ngamsConfig method)

 	
 	setDbTmpDir() (ngamsLib.ngamsDb.ngamsDb method)

 	setDiskChangeNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	setDiskSpaceNotifList() (ngamsLib.ngamsConfig.ngamsConfig method)

 	setFileChecksum() (ngamsLib.ngamsDb.ngamsDb method)

 	setLastCheckDisk() (ngamsLib.ngamsDb.ngamsDb method)

 	setLogicalNameForDiskId() (ngamsLib.ngamsDb.ngamsDb method)

 	storeVal() (ngamsLib.ngamsConfig.ngamsConfig method)

 	subscrBackLogEntryInDb() (ngamsLib.ngamsDb.ngamsDb method)

 	subscriberInDb() (ngamsLib.ngamsDb.ngamsDb method)

T

 	
 	takeGlobalDbSem() (ngamsLib.ngamsDb.ngamsDb method)

 	transaction (class in ngamsLib.ngamsDbCore)

 	
 	transaction() (ngamsLib.ngamsDb.ngamsDb method)

 	(ngamsLib.ngamsDbCore.ngamsDbCore method)

 	triggerEvents() (ngamsLib.ngamsDb.ngamsDb method)

U

 	
 	unpackMirReqSqlResult() (ngamsLib.ngamsDb.ngamsDb method)

 	updateCacheEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	updateDataCheckStat() (ngamsLib.ngamsDb.ngamsDb method)

 	updateDbTime() (ngamsLib.ngamsDb.ngamsDb method)

 	updateDiskFileStatus() (ngamsLib.ngamsDb.ngamsDb method)

 	updateDiskInfo() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	updateMirReq() (ngamsLib.ngamsDb.ngamsDb method)

 	updateSrvHostInfo() (ngamsLib.ngamsDb.ngamsDb method)

 	updateStatusMirReq() (ngamsLib.ngamsDb.ngamsDb method)

 	updateSubscriberEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	updateSubscrQueueEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	updateSubscrQueueEntryStatus() (ngamsLib.ngamsDb.ngamsDb method)

 	updateSubscrStatus() (ngamsLib.ngamsDb.ngamsDb method)

W

 	
 	writeCfgPar() (ngamsLib.ngamsDb.ngamsDb method)

 	writeDiskEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	writeFileEntry() (ngamsLib.ngamsDb.ngamsDb method)

 	
 	writeHostInfo() (ngamsLib.ngamsDb.ngamsDb method)

 	writeMirReq() (ngamsLib.ngamsDb.ngamsDb method)

 	writeToDb() (ngamsLib.ngamsConfig.ngamsConfig method)

 <no title>

 This procedure will:
* Create and bring up the required AWS instances
* Wait until they are fully operational, and
* Perform a hl.operations_deploy on the instances.

On top of the normal fabric variables used by hl.user_deploy and
hl.operations_deploy the following additional variables control the
AWS-related aspects of the script:

	Variable

	Description

	Default value

	AWS_PROFILE

	
The profile to use when connecting

to AWS

	
NGAS

	AWS_REGION

	
The AWS region to connect to

	
us-east-1

	AWS_KEY_NAME

	
The private SSH key to be used to

create the instances, and later to

connect to them

	
icrar_ngas

	AWS_AMI_NAME

	
The name associated to an AMI

(from a predetermined set of AMI

IDs) which will be used to create

the instance

	
Amazon

	AWS_INSTANCES

	
The number of instances to create

	
1

	AWS_INSTANCE_TYPE

	
The type of instances to create

	
t1.micro

	AWS_INSTANCE_NAME

	
The name of instances to create

	
NGAS_<rev>

	AWS_SEC_GROUP

	
The name of the security group to

attach to the instances (will be

created if it doesn’t exist)

	
NGAS

	AWS_ELASTIC_IPS

	
A comma-separated list of public

IPs to associate with the new

instances, if specified.

	
Not specified

 <no title>

 This task will:

	Create an initial Docker image with SSH on it

	Start a container using that image

	Perform a hl.operations_deploy on the container

	Perform some cleanups on the container, including removing the NGAS_ROOT directory

	Commit the container and create the final Docker image

On top of the normal fabric variables used by hl.user_deploy and
hl.operations_deploy the following additional variables control the
Docker-related aspects of the task:

	Variable

	Description

	Default value

	DOCKER_KEEP_NGAS_ROOT

	
If specified, the NGAS root

directory will still be present in

the final image

	
Not specified

	DOCKER_KEEP_NGAS_SRC

	
If specified, the NGAS source

directory will still be present in

the final image

	
Not specified

	DOCKER_IMAGE_REPOSITORY

	
The repository for the final image

produced by this task

	
icrar/ngas

 <no title>

 This task will:

	Check that SSH is working on the target host

	Check that sudo is installed (sudo is used to run commands as root).

	Install all necessary system packages (using the OS-specific package manager)
for compiling NGAS and its dependencies

	Compile and install a suitable version of python (2.7) if necessary

	Create the NGAS_USER if necessary

	Proceed with the normal NGAS compilation and installation as performed by
hl.user_deploy

	Install an /etc/init.d script for automatic startup of the server.

The user on the target host used for running the sudo commands is the SSH
user given to fabric via the command line (fab -u <user>).

On top of the normal fabric variables used by hl.user_deploy the following
additional variables control this script:

	Variable

	Description

	Default value

	NGAS_USER

	
The user under which the NGAS

installation will take place

	
ngas

	NGAS_EXTRA_PACKAGES

	
Comma-separated list of extra

system-level packages to install

on the target system(s)

	
Not specified

Currently supported OSs are Ubuntu, Debian, Fedora, CentOS, and MacOSX Darwin,
but more might work or could be added in the future.

 <no title>

 This task will:

	Check that SSH is working on the target host

	Copy the NGAS sources to the target host

	Compile and install NGAS into a virtualenv on the target host

	Create a minimal, working NGAS root directory

	Finally, modify the corresponding ~/.bash_profile file to automatically
load the NGAS virtualenv when the user enters a bash shell.

The user on the target host used for running these tasks is the SSH user given
to fabric via the command line (fab -u <user>).

This task doesn’t take care of installing any dependencies needed by NGAS,
assuming they all are met. For a more complete automatic procedure that takes
care of that see the hl.operations_deploy task.

The following fabric variables (set via the --set command-line switch)
are available to further customize the process:

	Variable

	Description

	Default value

	NGAS_SRC_DIR

	
The directory where the NGAS

sources will be extracted on the

target host

	
~/ngas_src

	NGAS_INSTALL_DIR

	
The directory where the virtualenv

will be created and NGAS

installed

	
~/ngas_rt

	NGAS_ROOT_DIR

	
The NGAS root directory created by

default by the installation

procedure

	
~/NGAS

	NGAS_REV

	
The git revision of the sources

used to compile and install NGAS

(only for sources from a git

repository). Keep in mind that

after cloning, you might have a

reference to remote branches

without having local branches

with the corresponding names, so

using NGAS_REV=v10 might not

work, but NGAS_REV=origin/v10

will.

	
HEAD

	NGAS_OVERWRITE_INSTALLATION

	
If specified, an existing

installation directory will be

overwritten

	
Not specified

	NGAS_OVERWRITE_ROOT

	
If specified, an existing

NGAS root directory will be

overwritten

	
Not specified

	NGAS_USE_CUSTOM_PIP_CERT

	
If specified, configure pip to use

curl.haxx.se/ca/cacert.pem as the

root TLS certificate. In some old

platforms this is needed so pip

trusts PyPI downloads

	
Not specified

	NGAS_EXTRA_PYTHON_PACKAGES

	
Comma-separated list of extra

python packages to install

	
Not specified

	NGAS_NO_CLIENT

	
If specified, skip the compilation

and installation of the NGAS C

client

	
Not specified

	NGAS_NO_CRC32C

	
If specified, NGAS will not depend

(and will avoid installing) the

crc32c python package. This is

useful if you know this feature is

not planned to be used at runtime

	
Not specified

	NGAS_DEVELOP

	
If specified, install the NGAS

Python modules in development mode

	
Not specified

	NGAS_NO_DOC_DEPENDENCIES

	
If specified, skip the

installation of python packages

needed to build the NGAS

documentation

	
Not specified

	NGAS_NO_BASH_PROFILE

	
If specified, skip the edition of

the user’s ~/.bash_profile for

automatic virtualenv sourcing

	
Not specified

	NGAS_SERVER_TYPE

	
The server type configured after

installing NGAS (archive,

cache)

	
archive

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to ngas’s documentation!

 		
 Introduction

 		
 Changelog

 		
 Installation

 		
 Installing from source

 		
 Manual installation

 		
 Via Fabric

 		
 Other Fabric tasks

 		
 Docker container

 		
 Post-installation

 		
 Setting up an NGAS instance

 		
 Create an NGAS root directory

 		
 Setup volumes

 		
 Running the server

 		
 Running the client

 		
 Running the tests

 		
 Using alternative filesystem

 		
 Using alternative databases

 		
 Keeping intermediate results

 		
 NGAS tools

 		
 Server tools

 		
 ngamsServer

 		
 ngamsDaemon

 		
 ngas-prepare-volume

 		
 Client tools

 		
 ngamsPClient

 		
 ngamsCClient

 		
 ngas-fs-monitor-client

 		
 Server

 		
 Configuration

 		
 Running Modes

 		
 Cache mode

 		
 Data mover mode

